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INTRODUCTION 

Statement of the Problem 

The purpose of this research is to study and formulate a 

failure mechanism which could apply to movement of rock bodies 

along their joints and fracture planes. Rock bodies can 

acquire these features of layering, jointing and fracturing 

either as a part of their geological origin or from external 

causes such as stress release, earthquakes, blasting, or 

other engineering activities. Such features in rock bodies 

are centers of weakness and control strength. 

Observed failures involving shear within rock or soil 

masses often occur in plane section, i.e. with a relatively 

constant cross section normal to the failure surface. Such 

a two-dimensional failure can be modelled by plane-strain 

shear tests, whereby the rock or soil material is confined 

to prevent strain in the third dimension. In the present 

study, such strain was prevented not by confinement but by 

the geometry of the individual particles, which are rods 

lying parallel to one another in a shear box. 

This research, therefore, involves subjecting ideal 

assemblages of rods to a biaxial stress field, varying the 

principal stress ratio, and recording the stresses, strains, 

volume changes, and translocations and rotations of individ­

ual members of the assemblage. Simultaneously, a theory was 

developed to predict the behavior, such that the theory 
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could be tested and revised as necessary. 

The biaxial testing method used has the following advan­

tages over the tests of natural materials ; 

1. A continuous photographically recorded inventory 

of individual particle movements in relation to 

assemblage stress, strain and volume changes. 

2. Ready prediction of an ideal behavior, such that 

departures from the ideal can be identified and 

related to causes. 

3. Controlled test conditions which minimize the sam­

pling variable by reusing the same sample. 

4. Ability of testing different regular geometrical 

array, affording a precise variation of void ratio 

and packing density. 

5. An accurate visualization of failure mechanism, 

in that failure by sliding and/or rotation can be 

differentiated. 
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BACKGROUND AND LITERATURE REVIEW 

In order to formulate a failure theory for a granular 

mass subjected to a biaxial stress field, it is necessary to 

understand the past and present concepts of dilatancy and 

sliding friction. 

Dilatancy 

Dilatancy —"The property of granular masses of expanding 

in bulk with change of shape. It is due to the increase of 

space between the individually rigid particles as they change 

their relative positions" (Century Dictionary). 

Dilatancy was first described and named by Professor 

Osborne Reynolds (1885), who shewed that a dense sand mass 

expands upon shearing. He observed: 

. . . I would point out the existence of a singular 
fundamental property of such granular media which 
is not possessed by known fluids and solids. On 
perceiving some thing which resembles nothing within 
the limits of one's knowledge, a name is a matter 
of great difficulty. I have called this unique 
property of granular masses "dilatancy", because the 
property consists in a definite change of bulk, con­
sequent on a definite change of shape or distortional 
strain, any disturbance whatever causing a change in 
volume and generally dilation. 

Reynolds observed that with granular media, so long as 

the grains are held in mutual equilibrium by stresses trans­

mitted through the mass, every change of relative position 

of the grains is attended by a consequent change in volume; 

and, if in any way the volume is fixed, then all change of 

shape is prevented. Professor Reynolds made one assumption. 
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that the position of any internal particle becomes fixed if 

the positions of surrounding particles are fixed. Without 

frictional bridging of particles over voids, this condition 

would always be fulfilled. It follows that no grain in the 

interior can change its position in the mass by passing 

between the contiguous (touching) grains without disturbing 

them; hence, whatever alteration the medium may undergo, the 

same particle will always be in the same neighborhood. If, 

then, such a medium is subjected to internal strain, the 

shape of the internal groups of particles will all be altered. 

The shape of each elementary group is determined by shape and 

arrangement of surrounding particles. Any distortion of the 

boundaries of such a medium will cause distortion of the 

arrangements of its particles, necessitating a change in 

volume and, hence, the mean density. If particles are rigid, 

the relations between distortion and dilatancy are indepen­

dent of friction; that is to say, the same distortion of any 

bounding surface must mean the same internal distortion 

whatever the friction may be. The only possible effect of 

friction is to render the grains stable under circumstances 

in which they would not otherwise be stable. 

Mead (1925), while applying Reynolds' theory of dila­

tancy to solid rocks, concluded that incoherent, granular 

masses such as sand, in a condition approaching maximum den­

sity packing (rhombic packing), are dilated by deformation; 

whereas, in a condition of open packing (cubic packing), they 
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deform without dilation. Prevention of free dilation by 

enclosing pressures induces failure by fracture or shear when 

the mass is deformed, and with development of joints and 

faults along thin zones of dilation. This manner of failure 

requires a minimum increase in volume and involves dilation 

only in the shear zone. When free dilation is not prevented, 

the granular mass deforms by flow. Such a deformation of 

closely packed grains involves the entire mass and causes a 

much greater volume increase than that required by failure 

along definite shear planes, and can be called plastic defor­

mation or plastic flow. 

Performing an experiment somewhat similar to Reynolds' 

experiments with a rubber balloon, sand and water. Mead (1925) 

observed that if the amount of fluid in the granular aggre­

gate is only sufficient to fill the voids in the condition 

of maximum density packing, deformation of the mass requires 

an increase in volume, and the mass fails largely by frac­

ture and not by plastic deformation. If the fluid available 

is slightly in excess of this amount, the aggregate is easily 

deformed plastically up to a point where the increased voids 

absorb the available fluid, at which point the mass becomes 

rigid. On the other hand, when the available fluid phase is 

sufficient to fill the voids with grains arranged in a cubic 

or minimum density packing, the mass may be deformed to any 

extent without an increase in volume, and failure may be due 

to plastic flow offering very little resistance to 
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deformation. 

The mechanics of response to deformation of incoherent 

granular masses can be applied to solid rocks by conceiving 

of them as having a solid and, potentially, an ideally imcom-

pressible fluid phase. The latter may cause the rock to 

yield to deformation by flowing or by fracture. In simplest 

terms, the rocks may be regarded as a granular aggregate, the 

hard grains the solid phase. To the extent that the rocks 

are porous, the pores represent the volume of fluid phase and 

the material that occupies the pores is the fluid phase. 

Alternately, the solid phase can be represented by harder, 

more resistant minerals of rock mass, whereas the potentially 

fluid phase can be represented by those constituents of rock 

which are relatively mobile, as evidenced by their rearrange­

ment to schistose (foliated, i.e., capable of splitting up in 

thin irregular plates) structiires through processes of crys­

tallization and recrystallization. Thus, potential fluid 

phases occur under certain conditions of composition, pres­

sure, temperature and rate of deformation. 

Brown and Hawksley (1947), while experimenting with 

regular two-dimensional packings of equal spheres, observed 

a marked tendency for the spheres to move together in groups; 

thus, they found a third process (besides the appearance of 

slip lines and dilatant expansion) by which the tight regions 

in the array break down. They pointed out that relative 

movement between groups of tight packing leads to the loss of 
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the peripheral spheres by a sort of "abrasion" between the 

groups which gave loose irregular packing between the groups. 

In effect, their observation showed that there is a 

tendency for local regions in packings to become or to remain 

tightly packed. In general, the tight regions did not dilate 

uniformly, but either failed locally in a line of slip or 

moved as a group. An initially uniform loose packing col­

lapsed locally, while an initially tight packing failed 

irregularly along lines of slips, in either case giving a 

nonuniform distribution of voids. Groups of tight packing 

were not found to mesh with each other. 

They concluded that in tight regular arrangements, dila-

tancy is a geometrical necessity if deformation is to occur; 

whereas, in irregular arrangements, dilatancy does occur, but 

the explanation lies in the "stability" of the packing. 

Moreover, since the groups of tight packing have been ob­

served to move as a whole without dilation, or when they do 

dilate to fail along the line of slip (in preference to a 

uniform dilation), it would seem that these groups possess 

some rigidity. Thus an assemblage, regarded as an arrange­

ment of fundamental units which are semirigid, may dilate 

through the interplay of these units. Since there can be an 

interchange of particles between adjacent units, such an 

interplay is more "flexible" than the interplay between indi­

vidual particles. 
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Andrade and Fox (1949), while working with a two-dimen­

sional regular (hexagonal) array of ebonite and polythene 

rods, pointed out that the dilation of a regular array is 

intimately connected with the mechanism of deformation. They 

detected two classes of dilational deformations, both of them 

consequences of slip on well-defined planes. In the first, 

the dilation was localized at the boundaries of regular areas 

of rods which preserved their original packing; in the second, 

it was more or less irregular throughout some of these areas. 

The first type is, in a sense, the more fundamental since the 

deformation necessarily involves slip which, in turn, in­

volves the primary dilation. The occurrence of secondary 

dilation was ascribed to some extent, at least, to surface 

cohesion of the array. In the absence of secondary dilation, 

the primary dilation showed a fairly regular alternation cor­

responding to the slipping and healing of the array. The 

regularity of this alternation was probably disturbed by the 

secondary dilation since secondary dilation could not be 

expected to show any regular variations. Secondary dilation 

was also found to be dependent on internal friction — the 

smaller the internal friction, the smaller the role played 

by secondary dilation. The result was that greater friction 

gave dilation which was not as regular as it was in the case 

of less friction. More surfaces of misfit, some of which 

became healed in the progressive stages, were observed with 

greater friction. This fact could be held as the direct 
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consequence of secondary dilation and increased internal 

friction. 

Apparently internal friction stabilizes the array 

against the onset of slip; but, when frictional forces are 

eventually overcome, the deformation becomes catastrophic 

with, consequentially, a greater tendency for the areas of 

rods to break up than when the deformation proceeds gradu­

ally, as in the case of low friction. 

Hills (1963) notes that the relationship of dilatancy 

to the spacing of shear planes developed in a deformed rock 

may be very important. Since a considerable amount of work 

is done in developing a single shear plan-? under dilatant 

conditions, the principle of least work suggests that the 

number of planes will be small in coarse-grained materials; 

whereas, with a fine-grained aggregate, each shear plane 

involves less work and the effort may be expended with equal 

facility on a greater number of planes. 

Sliding Friction 

Friction is a physical phenomenon which appears to have 

been recognized since before the dawn of civilization. Prim­

itive man made use of this universal attribute of matter in 

making fire. The Egyptians, the Greeks, and the Romans were 

fully aware of the fact that an effort is required to move an 

object over another object, including the earth's surface, 

and of the use of lubricants to reduce friction and wear. 
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In the examination of sliding friction, some historical back­

ground will be briefly examined. The modern concept of slid­

ing friction will then be presented. 

Historical background (reviewed in Bowden and Tabor, 1964) 

Writers such as Aristotle, Pliny the Elder, and Vitruv-

ius recognized the reality of friction, but it was not until 

the middle fifteenth century that Leonardo da Vinci (1452-

1519) translated the phenomenon into scientific laws. Unfor­

tunately, his work remained unnoticed in his notebook. It 

was in 1699 when a French architect, Guillaume Amontons 

(1663-1705), obviously unaware of Leonardo da Vinci's work, 

rediscovered the laws of friction and presented them to the 

French Academy in the form of a paper. His paper described 

the two main laws of friction, which are: 

1. Friction force is proportional to the normal 

load. For most surfaces, it is one-third of the 

normal load. 

2. Friction is independent of the size of the bodies. 

Amontons and his French contemporaries and successors 

saw the cause of friction in surface roughnesses. He even 

discussed the role of surface asperities and suggested that 

they could act in two ways. He said, "Either they are rigid, 

in which case friction is certainly due to pulling the weight 

up the slopes, or they are deformable, in which case the 

asperities are pressed down by the moving body and a similar 



www.manaraa.com

11 

force must be expended in doing this." 

Leonhard Euler (1707-1773), a Swiss-born mathematician 

and physicist, presented two papers in 1748 to the Royal 

Academy of Science in Berlin in which he discussed the mech­

anism of friction in terms of surface roughness and suggested 

that surfaces are covered with a series of ratchet-like teeth 

at different slopes, and that the ratio of the force of fric­

tion and the normal force is equal to the tangent of the 

angle of steepest slope. He also, for the first time, 

pointed out the distinction between static and kinetic fric­

tion. 

Charle Augustine Coulomb (1736-1806), a French scientist 

who was a civil engineer by training, reviewed Amonton's work 

in between his own earth pressure and electrical experiments 

and discoveries. He considered that friction could arise 

from lifting over asperities, bending of asperities, and 

breaking of asperities. He also considered the possibilities 

of cohesion, but rejected it as a cuase of friction because 

he thought the cohesion would increase proportionately with 

the number of regions of contact, i.e., gross contact area; 

whereas, friction was found to be independent of geometric 

area. 

Jean Theophile Desaguliers (1683-1744), an English 

physicist, discovered adhesion between like solid bodies in 

1724 and considered that a similar force might be involved 

in friction. He thus introduced a new element into the field 
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of theory of friction. 

Samuel Vince (1749-1821), another English scientist, 

carried out experiments which supported the view that adhe­

sion was an important part of friction. He stated that 

static friction is the sum of kinetic friction, which he 

called the true friction, and cohesion between surfaces. 

The development of the science of surface chemistry 

during the nineteenth century caused doubts and reexamination 

of the so-called "roughness hypothesis" or the interlocking 

theory of friction, eventually leading Ewing (1892) and Sir 

William Hardy (1919, 1936) to revive the molecular adhesion 

theory of friction. This approach of friction, due to molec­

ular attraction operating across an interface, was elabo­

rated by Tomlinson (1929). As the "adhesion theory" required 

the fractional force to be proportional to the area of con­

tact, it gained no recognition until the distinction was made 

between the real area and the apparent area of contact, on 

the basis of the works of Holm in 1938 using electrical con­

tacts and of Bowden and Tabor in 1942 on fractional contact. 

As the real contact area was shown to be proportional to the 

load and independent of gross contact area, the adhesion 

hypothesis was able to establish itself. On the basis of 

his studies, Karl Terzaghi (1960, pp. 173-174) agreed intui­

tively with the adhesion hypothesis. 

Modern friction research really started with the publi­

cation of the historic work of Beare and Bowden (1934), 
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followed by the classical works of Bowden and Leben (1939), 

and of Bowden and Bowden and Tabor (1939) on the friction of 

metals. These basic works dispelled the interlocking theory 

in favor of the adhesion theory. The observation of Beare 

and Bowden that the physical processes occurring during slid­

ing are too complicated to yield to mathematical treatment is 

still true today. 

Modern theory of friction 

Before discussing the latest accepted theory of friction, 

it will be worthwhile to discuss what we mean by area of con­

tact. 

When two surfaces are brought together into contact with 

each other under a normal load, there develops an area of 

contact through which the normal load is transmitted from one 

surface to another. There are three descriptions for contact 

area, namely: 

1. Equivalent continuum contact area, 

2. Apparent contact area, and 

3. Net contact area or true contact area. 

Equivalent continuum contact area 

Consider a small hypothetical element buried within a 

mass of soil (Lambe and Whitman, 1969, p. 97), with soil par­

ticles pushing against its horizontal and vertical faces. 

The soil particles generally exert a normal force and a shear 

force on the faces of the element. If each face of the 
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element is square, with dimension a on each side, then we 

can define the macroscopic stress acting on the face of the 

2 element as the ratio of force and total area a . The total 

2 area a used for defining the macroscopic stresses can be 

called equivalent continuum contact area. 

Apparent contact area 

When two contacting surfaces are subjected to a normal 

load, then a region of contact is bounded by an ellipse 

(Hertz theory) having semiaxes a and b. The area of this 

elliptical surface is called an apparent contact area. The 

apparent contact area Aa, in other words, is nothing differ­

ent than the elastic contact area which can be obtained from 

the elastic properties of the two contacting surfaces. The 

values of a and b are given by (Timoshenko, 1951, p. 379): 

where W  is the normal load, Ki, K z  are the elastic con­

stants, A and B are constants depending on the magni­

tudes of the principal curvatures Ri and Rz of the sur­

faces in contact and on the angle between the planes of the 

principal curvatures of the two surfaces; and m and n are 

coefficients depending on the ratio % 
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2/3 Apparent contact area = irab = K W ' 

where 
2/3 

•» 11 1 rv 1 —I— r\ o I 

K = TTirnï Stt (Kl + K z )  
4 (A + B) 

Terzaghi (1960) denotes this area as the area of gross con­

tact surface. 

True contact area 

From the above formula for apparent contact area (Hert­

zian or elastic contact area), it can be seen that the appar­

ent area depends to a large degree on the radii of curvature 

of the contacting surfaces and, furthermore, does not 

2/3 increase in direct proportion with load W, but with W . 

From very accurate experimental observations, it has been 

shown that the frictional resistance is caused by physico-

chemical interactions or bonds between surfaces in contact. 

The shear strength of such bonds for a given composition of 

contacting surfaces cannot possibly depend on any other fac­

tor than the area of the surfaces over which the molecular 

attraction is taking place. If the molecular interaction was 

active over the entire contact area (i.e., apparent contact 

area) computed by the Hertz formula, it would not be possible 

for the relationship between the load and friction to be 

independent of the radii of curvatures of the contacting sur­

faces , and the direct proportionality between these quanti­

ties could not be valid. Moreover, no matter how smooth the 
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surfaces may be, they must be considered rough in relation to 

the diameter of the sphere of influence of a molecule, and 

for the small pressures they will touch at only three points. 

(For stability, a surface must be supported at three points.) 

Hence, it is out of necessity that one must assume that with­

in the apparent contact area there are located substantially 

smaller island areas of true contact. Hence, net or true 

contact area can be defined as that part of the apparent con­

tact area through which the pressure is being transmitted 

from one surface to another,only from molecule to molecule; 

whereas, the spheres of influence of the molecules on both 

sides of the plane of separation must penetrate each other. 

The Terzaghi theory of friction 

On a submicroscopic scale, most surfaces — even care­

fully polished ones — are actually rough and contain projec­

tions of material above the average surface elevation. These 

projections are known as asperities. Two surfaces will be in 

apparent contact only where the projections touch one another. 

The actual contact area is a very small fraction of the appar­

ent contact area. 

Because contact occurs at discrete sites (island areas 

of true contact within the apparent contact area), the nor­

mal stresses across these contacts will be extremely high 

and, even under light loading, will reach the yield strength 

of ĥe material at these sites. Thus, the actual area of 
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contact is the area where material has yielded and is given 

by 

where W is the normal load and y is the yield strength 

of the softer surface. This shows that an increase in nor­

mal load between the two contacting surfaces must mean a pro­

portional increase in the area of actual contact. 

The extremely high contact stresses cause the two sur­

faces to adhere at the points of actual contact, i.e., two 

surfaces are joined by chemical bonds and shear strength is 

provided by adhesive strength of these points. The maximum 

possible shear force is thus given by 

m̂ax ~ ^ 

where s is the shear strength of adhered junctions which 

will be, in the absence of work hardening, the shear strength 

of the material of the softer surface. With work hardening, 

s will be more than the shear strength of material of the 

softer surface. 

From the above equations and the empirical observation, 

the coefficient of friction f is equal to the ratio of 

tangential force to normal force, i.e., 

f = % = 
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The Bowden and Tabor adhesion theory of friction 

We have seen in the earlier discussion that the appar-

2/3 ent contact area is proportional to W . If we define 

mean pressure p̂  over the area of apparent contact as the 

ratio of normal load W to the area of apparent contact Â , 

1/3 then it will be proportional to W . As the load W is 

increased, the mean pressure p̂  increases, first within 

elastic limits so that the surfaces return to their original 

configuration on the removal of load between them, and then 

reaching such a value that at a critical point within the 

softer material the elastic limit is exceeded. This occurs 

at a region where the shear stresses are a maximum, which is 

given by Hertz' analysis to be at a depth of 0.5 times the 

sum of the semiaxes of the apparent contact area (elliptical). 

The elastic limit is just exceeded at this point when the 

mean pressure p̂  is given by 

Pm = cy 

where y is the yield stress or elastic limit of the softer 

metal as found in pure tension and c is approximately equal 

to 1.1. If the load is increased further, the area of con­

tact and the mean pressure p̂  rise in such a manner that a 

region of plasticity grows rapidly, and a stage is soon 

reached at which the whole of the material around the region 

of contact is flowing plastically. At this stage, c in the 

above equation is approximately equal to 3. If the load is 
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increased still further; it is found that although the size 

of the deformed area increases, the above relation with 

c = 3 is still valid, provided (1) the deformed area is not 

too large compared with the size of the specimens, and (2) 

there is no work hardening. The mean pressure p^, which we 

may call the "yield pressure", is almost independent of the 

size of asperities and of the size of indentation and, there­

fore, of the load. 

In the case of a spherical asperity pressing on a flat 

plate, the load W_ which causes the initiation of a plastic jj 

region is given by 

where r is the radius of the sphere and Ei and Ez are 

elastic modulii for plate and sphere, respectively. The tip 

of a conical or pyramoidal shape can be considered a sphere 

of diminishing radii; so, from the above relation, it can be 

seen that a very small load can deform asperity beyond the 

elastic limit. 

For metals which do not work-harden, the yield stress 

y is a constant; thus, p^ (% 3y) is a constant. Conse­

quently, we may expect that in most practical cases for all 

types of shapes of surface irregularities, the true area of 

contact Ag over which plastic flow occurs will be very 

nearly directly proportional to load W and inversely pro­

portional to the meem yield pressure p^^ ~ 3y of the 
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asperities, and is given by 

The above analysis establishes that, on a macroscopic 

scale, elastic deformations are taking place and the area of 

2/3 apparent contact is increased with W ' ; whereas, on a 

microscopic scale, plastic deformations are tailing place on 

the tips of the asperities,and the area of true contact is 

increased with W, the nonnal load. 

In summary, it can be said that the true contact area 

is the sum of the flattened tips of the asperities or is 

the plastic contact area, while the apparent contact area A^ 

is the region covering the macroscopic indentation or is the 

elastic contact area. The ratio of the true to the apparent 

contact area is approximately equal to 

^c _ elastic limit y 
A^ raised elastic limit due to work-hardening ^ 

This ratio is about 0.5, even in the case of highly work-

hardened specimens. In other words, the plastic flow of the 

asperities provides the true area of contact which supports 

the load, and the stresses in the asperities are taken up by 

the elastic deformations on the apparent contact area of the 

underlying metal. 

On the basis of experimental work, it has been observed 

that frictional effects are not confined to the surface of a 

solid, but cause distortion and deformation to a depth 
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beneath the surface. The physical processes that occur dur­

ing sliding are too complex to yield easily to a simple math­

ematical treatment; but the experiments show that, under the 

intense pressure which acts at the summits of the surface 

irregularities, a localized adhesion and welding together of 

metal surfaces occurs. When sliding takes place, work is 

required to shear these welded junctions and also to plough 

out the metal. We may therefore express the frictional 

resistance as the sum of two terms, one of which represents 

the shearing and the other the ploughing process. 

The shearing resistance is the force required to 

shear the junctions formed at the points of intimate contact 

between the two surfaces. This is given by 

m̂ax ~ ^ 

W where is the true contact area ~ under normal load 

W, and s is the force per unit area which, acting in a 

direction tangential to the interface, is required to shear 

the junction. 

The ploughing resistance P is the force required to 

displace the softer metal from the front of the harder slid­

ing asperity. This is given by 

P = A'p' 

where A' is the area of cross section of the grooved track 

and p* is the mean pressure required to displace the metal 
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in the surface; p' may be expected of the same order as 

Pm = cy-

The total frictional force F is given by 

F = ̂ max + P = s + A'p". 

If the ploughing term is negligible, then 

F = s. 

True contact area depends only on W and p̂ , and is almost 

independent of the apparent contact area of the surfaces. 

This is equivalent to Amonton's first law. 

F  =  J L s  

m̂ 

" Pm 

The coefficient of friction f equals hence, the coef-

ficient of friction is virtually independent of the load W. 

This is equivalent to Amonton's second law. 

f = shearing strength of junction 
yield pressure of the softer material 

As shearing usually occurs in the softer material, then 

J. _ shearing strength of the softer material 
yield pressure of the softer material 

Two conclusions can be arrived at from the above equa­

tion. The first is that the s and the p̂ , being strength 

properties of the same material, vary together; and their 
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ratio is roughly the same for most diverse materials. The 

second conclusion is that temperature should affect s and 

p^ much the same, and should not have a marked effect on the 

coefficient of friction. 

The examination of Terzaghi's theory of friction and 

Bowden and Tabor's adhesion theory of friction make it evi­

dent that both the theories are practically the same and 

originate from the adhesion concept of contacting surfaces. 

Terzaghi stated his hypothesis in 1925 in his pioneering book 

on soil mechanics entitled Erdbaumechanik, but his ideas on 

this subject were overlooked for many years. The hypothesis 

was independently stated and shown to describe the frictional 

behavior of a wide variety of materials by Bowden, Tabor and 

their colleagues late in the 1930's. This is now called the 

adhesion theory of friction and serves as the starting point 

for all friction studies. 

Influence of surface film 

Most surfaces under the normal laboratory conditions 

are covered with contaminating films and oxide layers and, 

during sliding, these oxides and surface films will be torn 

and some metallic contact will occur. The shear strengths 

of the metallic junction and that of the contaminating film 

are far different in magnitude. In addition, experiments 

show that the deliberate addition of a lubricant film 

reduces the intimacy of contact and the mean strength of 
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adhesion of the junction. Therefore, we should expect the 

adhesion and shear strength of contaminated surfaces to bé 

less than that of pure surfaces. 

Let p be the fraction of the area of contact over 

which metallic contact occurs, and let Si, Sz be the shear 

strengths of metallic and contaminated junctions. Then the 

force of friction F is equal to 

F = A^psi + A^(l - p)S2 

= AgCpsi + (1 - P)S2] 

Influence of removal of normal load 

Terzaghi (1960) believes that when cohesion exceeds 

adhesion, even by a small amount, the joint between contact­

ing surfaces will open up during unloading because of elas­

tic stresses, and the true contact area will almost approach 

zero. 

Bowden and Tabor (1954) agree to the fact that when the 

load is reduced there is a relaxation of elastic stresses in 

the contacting surfaces, and they separate according to the 

laws of elastic deformation. In the case of harder metals 

and contaminated surfaces, these deformations are sufficient 

to break junctions, thus decreasing the area of contact. 

Influence of dust particles 

Metal surfaces are generally rough on an atomic scale. 

When they are placed together, they first make contact at the 
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kZ 
tips of the most prominent projections. With metal exposed 

to the atmosphere, one type of projection that may be impor­

tant is dust particles. The dust particle does not shield an 

area of surface equal only to its own cross-sectional area. 

Its region of influence is much larger for geometric reasons 

(see the above figure), since if it supports the edge of the 

conical tip it will still prevent contact. 

Friction of Rock 

Frictional effects are of importance in rock mechanics 

mainly in two connections: first, on a very small scale, 

between the surfaces of minute Griffith cracks (minute inter­

nal and surface flaws, stress concentration at their ends 

cause failure); and second, on a large scale, between the 

surfaces of joints or fracture planes. In the latter case, 

the surfaces in question may be new surfaces or joints on 

which no sliding has occurred, or they may bé old surfaces 

or faults on which considerable sliding has already taken 

place. 

The adhesion theory of friction has proven experimen­

tally satisfactory for metals ; but it is of doubtful validity 
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for rocks and minerals due to the fact that minerals tend to 

fail by brittle fracture rather than by plastic flow, and the 

cold welding hypothesis for metal may not be true for miner­

als. However, the concept of contact at a limited number of 

asperities should be true. 

Byerlee (1967), using a truncated cone as a model asper­

ity and with the assumption that it fails by tensile frac­

ture, came to the conclusion that Amonton's law holds for a 

single asperity with a small coefficient of friction (0.1); 

but higher coefficients of friction may be attributed to the 

interlocking of asperities. 

Apart from the above microscopic effects, the extended 

surfaces which occur in practical rock mechanics are prob­

ably very irregular; and the effects of ploughing and irreg­

ular sliding should not be ruled out. 

Murrell (1965) found that a simple law, as given below, 

gave a better fit to his experimental results over a wide 

range of a. 

T = MgC 

where and m̂  are constants, a is the normal stress 

across the surfaces in contact, and x is the shear stress 

across them necessary to initiate sliding. 

Jaeger (1959) found a very good agreement of his experi­

mental results, particularly at low stresses, with the linear 
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law 
T = + ya 

where and u are constants. 

Bowden (1954) and his coworker made some experiments on 

minerals. In the case of rock salt, it appeared that there 

was considerable fragmentation of the surface, both on a 

crystalline and on a microcrystalline scale. For diamond on 

diamond, it was found that the frictional force is propor-

2/3 tional to W ' , suggesting that only elastic deformation is 

involved. 

Bowden and Tabor (1954, 1964) report very large effects 

due to surface contamination; for example, for freshly 

cleaved mica, the coefficient of friction is of the order 1; 

for a surface which has become contaminated by exposure, the 

coefficient of friction falls to 0.3; while for a surface 

which has been outgassed in a vacuum, it may rise as high as 

35. These results suggest that the coefficient of friction 

may be very high in newly opened Griffith cracks. 

Horn and Deere (1962) and Penman (1953), while using 

small contacts of single mineral, demonstrated an important 

effect of wetting the surfaces; in some cases, for example 

quartz, the coefficient of friction is raised, while in 

others, e.g. biotite, it is lowered. 

2 Byerlee (1967) , by using larger specimens (2 cm area) 

of various minerals sliding on sapphire, found an increase of 

coefficient of friction from 0.1 to 0.4 with increasing 
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roughness of the sapphire surface. 

Patton (1966), Ripley and Lee (1961), and Coulson (1970) 

studied the macro-irregularities in more detail and came to 

the conclusion that 

T = a tan (8 + #) 

where 6 is the inclination of the slope in the direction 

of T. 

Drennon and Handy (1972), in their investigation of 

stick-slip of lightly loaded limestone at various conditions 

of loading, concluded that smooth slip at room tanperature 

does involve asperity-to-asperity bonding, but through a film 

of adsorbed water having an activation energy as -5 to -10 

Kcal/mole for liquid water. Above 100®C, the activation 

energy sharply increased, indicative of more direct bonding, 

and the stick-slip became the dominant mode of deformation, 

with the development of asperity fracture debris. Higher 

normal loads also favored stick-slip at room tençerature, 

apparently through perforation of the adsorbed water layer. 

The introduction of debris reduced this tendency, indicating 

that debris increased the true contact area and again allowed 

sliding on the adsorbed water film. However, debris, either 

added or generated as a result of asperity fracturing during 

slip, increased the coefficient of friction, indicating that 

the larger true contact areas — even with lowering bond ener­

gy due to adsorbed water — had a greater resistance to shear 
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than did the accumulated smaller contact areas which perfor­

ated the adsorbed water films. If their interpretation is 

correct, this effect should diminish at higher loads as the 

area of direct contact increases. 

Friction of a Dilatant Mass 

The internal friction of a soil or of any dilatant mass, 

thus, is considered to be comprised of two components: slid­

ing friction, and dilatancy or "interlocking". Interlocking 

has also been recognized by later workers in metals. At the 

present stage of knowledge, it can be said that Reynolds' 

dilatancy theory superimposed on the adhesion theory of fric­

tion can roughly formulate the friction theory of dilatant 

masses. If is the force of friction due to dilatancy 

(see the following page) and is that due to adhesion, 

then F, the force of friction of the dilatant mass, is 

given by 

F = Fg + fa 

= W tantj) + K W 

= W(K + tan({)) 

 ̂= (K + tan#) 

F where  ̂can be called the coefficient of friction of dila­

tant masses, K is a constant reflective of adhesion friction, 

and (|) is the angle of sliding friction. 
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W 

W sin $ 

F cos $ 

Fd cos $ = W sin? 

Fd = W .®32-L = w tan # 
cos $ 

Dilatancy Theory (Top) 

Fa 

Actual contact area, Ac = K, W 

Adhesion friction. Fa = I^Ac = KW 

Adhesion Theory of friction (bottom) 
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Energy Theory of Dilatant Mass 

Reynolds' energy concept 

Taylor (1948) is usually credited with being the first 

to attempt separation of two components of friction of dila­

tant masses by evaluating the work done by dilatant expansion 

in direct shear against the normal pressure; but it seems 

that Reynolds (1885) had a similar energy concept in mind and 

which he applied to granular masses, only with the difference 

that he neglected friction. He said. 

If the particles were rigid the medium would be abso­
lutely without resilience and hence the only energy 
of which it would be susceptible would be kinetic 
energy, so that, supposing the motion slow, the work 
done upon any group in distorting it would be zero. 
Thus, supposing contraction in one direction and 
expansion at right angles, then if px be the stress 
in the direction of contraction, and py, pz the 
stress at right angles, a being contraction, b and 
c expansion, 

px a + py b + pz c = 0 

or supposing b = c, py = pz 

px a + py (a + c) =0 

with friction the relation will be different; the 
friction always opposes strain, i.e. tends to give 
stability. 

Taylor energy theory 

Let be the normal stress, T the shear stress, 

that portion of shearing stress which acts to supply the 

energy of expansion or shear stress necessary to cause the 

sample to dilate against the normal stress, 5^ the incremen­

tal displacement in direct shear test in the direction of 
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shearing force, and 6^ the incremental volume per unit area 

which is incremental displacement in the direction of the 

normal stress. Then 

Work done against normal stress 

= Work done by in moving through 

"n «V = 

shearing strength contribution by friction = T -

T-T, T T, 
—— = — = tan (angle of internal friction) 

= tan (j>^ 

= tan + 5^-
n n 

•max = tan 4'r + — 
u 

where <{)«.„ is the angle of friction of the granular mass max ^ 

and (|>^ is the internal coefficient of friction. 

The above energy equation was later adapted to the tri-

axial test by Skempton and Bishop (1950). 

Let ai, 02/ 03 and dei, de2, des be major, inter­

mediate and minor principal stresses and corresponding incre­

mental strains, respectively; dW^, the incremental work done 

by friction and cohesion; dv, the incremental volume change 

per unit volume. As az = 03 in the triaxial test, then 
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Work done during a small increment of strain d£i at failure 

= work done against friction and cohesion 

+ work done against era by dilating sample 

or 

ai d£i = dW^ + 03 (de 2 + des ) . 

But 

dv = d£i + d£2 + des . 

Here, de2 and des are extension strain increments and 

de 1 is the compression strain increment. Therefore, 

de 2 + de 2 = dv + de % 

a 1 dci = dWg + 03 (dv + dei) 

de 1(01-03) = dWg + 03 dv 

dW. 
(01 - 03 ) = ̂  + Os dei dei 

The portion of the strength which can be associated with 

volume change is, therefore, equal to 03 Bishop fur­

ther developed the above equation in the form 

tan2(45 + § 4̂ ) = (gj') ̂ " "3 ̂  

where and  ̂ are residual angle and stress ratio, 

respectively. 

Newland and Allely Theory 

Newland and Allely (1957) considered that the direction 

of sliding of one particle relative to another is, in 
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general, inclined at an angle to the direction of the applied 

shear stress. By resolving forces and displacements of par­

ticles parallel and perpendicular to their sliding surfaces, 

they arrived at the following expression for the direct shear 

test. 

T 
= tan(*2 + 8) 

n 

= tan 0 
A'max 

(^) 
t? 

—— = tan <i)^ 
n 

where 8 is the angle of sliding surface with the direction 

of shear stress; <}>- is the angle of internal friction, which 

accounts for the influence of not only the coefficient of 

sliding friction, but also of the mode of failure; %is 

the stress required to overcome frictional force, assuming 

sliding planes are parallel to the direction of the shear 
6 

stress; a is the normal stress; and is the rate of n 0^ 

volume expansion. 
T 

They suggested that using experimental values of —— 

/ Ô  \  ^  
and ( J in the above equations, t * can be obtained. 

°̂Â max * 

T'gy in turn, can be compared to experimental residual 

stress Tjj. 

Newland and Allely extended their analysis to the tri-

axial test and obtained the following expressions: 
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or 

ta*: (45 *  U  *  i )  
0 3  Z  C  

6v _ tana - tan (a - 6) 
3v tan (a-6) 

a  1 
max 

~ 

+ -ÊP + (|?) } 
max 

= tan (45 + 
03 " 2 

where a 3 is the chamber pressure, ^^niax the maximum 

(or peak) axial stress, and a'^ is that part of 

required to mobilize the frictional resistance assuming 6=0. 

Again, the experimental value of —and ^ax 

give 6, (J)^ and which, in turn, can be compared to 

its corresponding experimental values. 

Newland and Allely compared their equation with that of 

Taylor and Bishop, and considered that the difference between 

the energy approach method and their method lies in the tacit 

assumption that the work done in overcoming ôWf is the same 

at both the peak and the residual states; whereas, according 

to their theory, the shear stress has a component normal to 

the plane of sliding which contributes to frictional strength 

but which decreases in magnitude as expansion occurs. In 

other words, the work done in overcoming frictional forces is 
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greater at the point of maximum shear stress than at residual 

stress state. 

Caquot (1934) derived the following expression relating 

angle of friction at constant volume <()^^ and true angle of 

friction between mineral surfaces: 

ta**cv ̂  tan(j>̂  

Bishop (1954) also developed an approximate solution in 

the form 

15 tanij)^ 
sin(})cv = 10 + 3 tan*̂  

While the precise validity of these equations is doubt­

ful, the experimental values fit the above equations closely. 

Rennie (1959) studied the least stress ratio which will 

cause failure in a close-packed face-centered packing and 

obtained the approximate solution 

^ = 2 + 2/6 u + (higher terms in u) 

Thurston and Deresiewicz (1959) also considered a face-

centered array of equal spheres with a 2 = 03 and arrived at 

the following expression: 

ai _ /6 + 8u 

/6 + 4u 

where u is a coefficient of friction. 
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Rowe "Stress-Dilatancy" Theory 

Rowe.considered, experimentally and theoretically, the 

behavior of assemblies of cohesionless, uniform rods in a 

parallel stack and spherical particles of uniform size, 

arranged initially in regular arrays. The assemblies of par­

ticles are subjected to axially symmetrical state of stress. 

From his analysis based on a consideration of the forces 

between particles, he arrived at the following findings for 

regular packing. 

1. Whatever the geometrical arrangement of solids, 

the stress ratio at the peak strength and during 

subsequent states of deformation follows the law 

 ̂= tana tan($ + 3). 
a 3 u 

2. The energy ratio E for a fixed orientation of 

particle movement is given by the expression 

g ̂  + B) 

aa (1 + 
£ 1 

3. Slip occurs well past the peak stress ratio at 

failure, thus establishing that the slip plane is 

not the cause but the result of failure. 

In the above findings, a is the angle which the imagi­

nary plane of particle interlocking makes with the direction 

of the minor principal stress, B is the angle of deviation 
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of the tangent at the contact point from the direction of 

major principal stress, and is the angle of sliding 

friction. 

Rowe extended his analysis to a random mass of irregular 

particles by suggesting that the form of law which applies to 

any individual packing may be expected to apply to mixture of 

packings. He observed that the angle a, characteristic of 

the particular packing arrangement, disappeared in the expres­

sion for E; thus, he concluded that the energy equation 

applies to random assemblages of particles, as well as to 

regular arrays. Since in random, the values of B vary ini­

tially throughout the mass, the angle of sliding must also be 

determined. He then shows that there exists a critical angle 

11 of 3 [namely, 6=  ̂" Y ̂ û  ̂which makes E a minimum, 

and transforms the energy ratio equation into 

E - tan̂  - — 

(1 + 

Departure from the stress dilatancy behavior given by 

the energy ratio equation is explained by Rowe in terms of a 

process he refers to as rearranging. In a loose sand, and in 

an initially dense sand when it reaches a point near the max­

imum stress ratio the length of the individual slide a 3 

paths of one particle over another becomes appreciable with 

respect to the dimensions of the particles; hence, according 

to Rowe, sliding is no longer restricted to a value of 3 
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which gives the minimum rate of expenditure of energy in 

internal friction. The effective value of then becomes 

where 

At the ultimate state of deformation when the sample 

reaches the stage at zero rate of volume change, the effec­

tive value of at this ultimate constant volume condi­

tion, denoted by is obtained from the equation  ̂= 

tan̂  (J TT + Y using the observed stress ratio. 

Rowe (1963) applied the stress dilatancy theory to the 

stability of earth masses behind retaining walls, in slopes, 

and in foundations. 

The stress dilatancy theory of granular masses postu­

lated by Rowe was discussed by Scott et al. (1964) , Gibson 

and Morgenstern (Trollops et a2., 1963), Scott (1963), and 

Trollope et al. (1963). Their main criticism was directed 

towards : 

1. the assumed mechanism of deformation, 

2. the assumed absence of rolling, 

3. the assumption that the energy ratio E is mini­

mum in a random assembly, and 

4. the significance of the a-plane. 

Home confirmation 

A more general derivation was presented by Home (1965) 

who did not restrict his analysis to ideal packing. He 

obtained exactly similar results to that of Rowe and, thus. 



www.manaraa.com

40 

substantiated his theory. Home built up his analysis on the 

basis of the following hypotheses: 

1. The assembly consists of rotund, rigid, cohesion-

less particles with a constant coefficient of 

sliding friction. Elastic and plastic deformation, 

crushing, and cracking are all ignored. 

2. Deformation occurs as a result of relative motion 

between groups of particles. Motion is not facil­

itated by the presence of individual particles 

acting as rollers between groups. 

Home obtained the expression for the energy ratio E 

by writing a virtual work equation for the input 0iei. Then 

he minimized this ratio to obtain a value of 6̂  = 45 - ̂  

which then led to 

E  =  — — —  =  t a n ^ ( 4 5  +  j  < $ )  )  

For the triaxial compression test with a2 =03 and 

£2 = E 3, this reduces to Rowe's equation. Home thus estab­

lished the limitation of the stress dilatancy theory and 

concluded that the equation of energy ratio E that provides 

a relationship between work quantities cJiEi/ G2E2 and 

ff 3£ 3 does not provide a relationship between stress and 

strain rates separately. He also concluded that the rela­

tionship may not apply to a highly compacted assembly with a 

high degree of interlocking. 
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Tinoco and Handy Theory 

Tinoco and Handy (1967) considered a random particle 

assemblage and the possibilities for either sliding or roll­

ing. They demonstrated that sliding occurs at contacts where 

the angle of inclination 3 is maximized, whereupon 

1 + sin4>„ <j)„ 
ft = = tann45 -f) 

which is identical to the empirical Mohr-Coulomb theory. 

Next, considering the work of volume change, they derived an 

equation for principal stresses due to friction. In simpli­

fied form. 

where is the angle of sliding friction, is the unit 

volume change per unit axial strain, and 0^^ is a dimen-

sionless constant. 

For the triaxial compression test, they arrived at the 

expression 

"tc= [(^- 1)(1 -

where is the axial unit strain contributing to volume 

change. The equation was tested by plotting ^ + (1 + 

versus ^ + (1 + which should give a straight line of 

slope arctan sin* and an intercept of A. All the graphs 

showed linear portions with slopes consistent with 
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mineralogical composition, suggesting establishment of an 

equilibrium interlocking parameter prior to dilation. 

After dilatant expansion, a new line is sometimes established 

at a lower but still with the same slope, further sup­

porting that this gives an independent measurement of sliding 

friction. From the plots it becomes evident that if the 

coefficient of sliding friction is constant, then the inter­

locking function first increases with increasing strain, 

indicating compaction, and then decreases upon dilation and 

failure. 
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MEASUREMENT OF COEFFICIENT OF SLIDING FRICTION 

Since modern friction theory applied to granular systems 

separates dilatancy and sliding friction components, an inde­

pendent investigation was made to evaluate sliding friction 

between individual rods used in the experiments. The fric­

tion test apparatus and method finally used are those of 

Shyam Bahadur (1970). A brief description follows; for a 

more complete description, see Shyam Bahadur (1970). 

Principle 

The principle involved in the design of the friction 

apparatus was to achieve a sliding motion between two speci­

mens at different speeds, and to measure the friction force 

developed between the sliding surfaces. The machine has a 

disc rotated by a reduction system of gearing from a reversi­

ble drive motor. A flat friction specimen is attached by 

screws to the top of this disc. The other specimen, which 

is in the shape of an indentor, is secured in a head at the 

end of the cantilever beam. 

The indentor is loaded through an L beam (Fig. 1) by 

means of a loading string and pulley. When the indentor is 

loaded, it presses on the flat specimen and the force of 

friction causes the cantilever to deflect laterally. The 

displacement (in terms of thickness of air gap) of the canti­

lever beam is measured by a sensing element and, by means of 

a previous calibration, the frictional force is recorded. 
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Figure 1. Sliding type friction test apparatus; 
(a) section, (b) plan, (c) modeling two 
sliding rods 

1. Indentor 

2. Cantilever beam or horizontal leg 
of L beam 

3. Sensing device 

4. Loading string 

5. Pulley 

6. Dead load 

7. Aluminum holding disc 

8. Flat specimen 

9. Revolving disc 

10. Reduction gears 

11. 1/3 h.p. motor 

12. Air gap 

13. Vertical leg of L beam 

14. Bearing fixed to the main frame 

15. Arrow showing direction of motion of 
revolving disc 

16. A parallel bar to hold the transducer 

17. Horizontal member 

18. Indentor head 
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Indentor as viewed from 
right. 
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The flat specimen can be rotated at any desired speed. 

Arrangement is also provided to measure friction on various 

tracks on the flat specimen. 

The lever arm of this loading system is designed such 

that a suspended load of 200 gm. can load the specimen with 

875 gm. The I-beam is machined from a single steel block and 

the horizontal leg is slender enough for appreciable deflec­

tion in the horizontal plane, but is relatively stiff in the 

vertical plane. The L-beam is supported by a horizontal axle 

which allows rotation in a vertical plane. A parallel bar 

carrying an induction transducer on one end is fixed rigidly 

to the horizontal axle at the other end and creates an air 

gap in the indentor head. The cantilever is calibrated in 

such a way that the frictional force is read directly from 

the change in resistance of the air gap. 

Specimen Preparation 

As our rods have a maximum diameter of 1", a flat speci­

men in the shape of a disc of 2-7/8" diameter and 1/8" thick­

ness could not be obtained. To overcome this difficulty, a 

disc of 1" diameter and 1/8" thickness was cut out of a 1" 

diameter rod. This 1" diameter disc was pressed 1/4" away 

from the edge into a 2-7/8" diameter and 1/8" thick aluminum 

disc. The surface of the assembly of the aluminum disc and 

steel disc was machine polished. The indentor was cut from 

a 1" diameter rod into a shape of a T, in such a way that the 
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outer face of the horizontal leg of the T has the radius of 

curvature of the original cylindrical surface, which is 1/2" 

in the case of the 1" diameter rods. 

Test Procedure 

The flat specimen and the indentor were cleaned with 

methyl alcohol and were kept in a desiccator. After drying, 

the flat specimen is mounted on the revolving disc with 

screws in such a way that the 1" diameter steel disc pressed 

into the larger aluminum disc was very nearly under the inden­

tor head. The indentor was held to the head in such a manner 

that it can model the sliding between two parallel rods. 

Care was taken to switch on all the electrical and electronic 

devices at least half an hour before the start of the test to 

stabilize the working of all the components. The test was 

started by turning the revolving disc at the desired speed of 

0.001" per minute, the force of friction being observed at 

regular intervals. Two calibration readings were taken for 

each test — one before and the other after the test. After 

observing the force of friction for a few times with a par­

ticular normal load, the normal load was changed quite a 

number of times during the same test to enable plotting a 

graph of the coefficient of friction versus normal load. 

Test Results 

Table 1 gives the experimental values of the frictional 

force in gms. and the coefficient of friction f for 
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Table 1. Variation of coefficient of sliding friction 
with normal load in the case of 1"-diameter 
rods 

Normal load, W Friction force. Coefficient of 
(gms) Fr (gms) friction, f 

283.7 54.990 .1938 

51.324 .1809 

371.6 71.487 .1924 

76.986 .2072 

459.5 91.650 .1995 

574.4 106-314 .1942 

109.980 .2009 

635.3 114.563 .1803 

723.2 128.310 .1774 

131.976 .1825 

811.1 146.640 .1808 

164.970 .2034 

899.0 174.135 .1937 

183.300 .2034 
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Table 2. Variation of coefficient of sliding friction with 
normal load in the case of teflon rods 

Normal load, W Friction force. Coefficient of 
(gms) Fr (gms) friction, f 

1758 1.0 0.0153 

1.1 0.0168 

3330 1.9 0,0156 

to
 
o
 

0.0164 

1.9 0.0160 

4901 2.0 0.0112 

to
 

to
 

0.0123 

2.1 0.0117 
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various normal loads W in gms. A curve of coefficient of 

friction versus normal load in Kg is given in Fig. Id. An 

examination of the curve indiates that the sliding coeffi­

cient friction is about equal to 0.2 for l"-diameter steel 

rods. 

Table 2 gives similar experimental values for teflon. 

An examination of Table 2 indicates that the coefficient of 

friction for teflon is approximately one-tenth of that of 

steel and lies between 0.01 and 0.02. 

Scanning Electronic Microscope Photographs 

S.E.M. photographs (magnification = 300x) for the sur­

faces of 1/4" and 1"-diameter rods are shown in Figures le 

and If. An examination of the photographs shows that even 

on a macroscopic scale, the surfaces are rough from point to 

point. 
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Figure 1 (Continued) (d) variation of friction with load 
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Figure 1 (Continued) (e) scanning electron micrograph — 
300x natural size surface of the l"-diameter rod 
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Figure 1 (Continued) (f) scanning electron micrograph — 
300x natural size surface of the 1/4"-diameter 
rod 
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TEST APPARATUS, SAMPLE PREPARATION, 
AND TESTING TECHNIQUE 

The Biaxial Test Apparatus 

Brief description 

Briefly, the biaxial load test apparatus which formed 

the core of the experimental program consists of a horizontal 

load frame with an included horizontal removable teflon-lined 

test bed to contain an assemblage of vertical rods. Control­

lable confining stresses are introduced along the sides of 

the bed by aluminum plates and pressure cylinders. An axial 

strain is applied at one end of the test bed by a screw and 

jack arrangement powered by a 1/6 h.p. motor, the axial force 

being monitored with a Dillon load cell (Fig. 2). Axial and 

lateral deformations are measured with 0.001" mechanical dial 

gages (known as Ames dials), a 35mm camera being used to 

simultaneously record the dial readings and positions of the 

test rods after every 0.005" axial strain in the beginning, 

and 0.010 and 0.020" in the later stages of each experiment. 

The axial deformation rate is kept constant at 0.00465" per 

minute with a +2.5% variation. This gives a strain rate of 

0.001% per second with, of course, a +2.5% variation. 

General features 

The biaxial test apparatus is a complex set up, consist­

ing of four major systems described later. The basic concept 

involved in the design of this machine was to deform to 
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Figure 2. The biaxial test apparatus 
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Figure 2 (Continued) 
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failure an assemblage of rods under constant lateral pressure 

(CT3), and to measure the volume changes and axial (oi-axis) 

loads. Axial load is the measurement of resistance offered 

by the assemblage to the axial (oi-axis) deformations. The 

machine has a collapsible box (Fig. 3) which is 15" long, 

5" wide, and 4" high, with an open top and a false bottom. 

The width of the box can be varied to a reasonable extent so 

as to accommodate assemblages of rods of different diameters. 

The rods are made to stand on their ends in a fixed geometri­

cal arrangement. This has been done so as not to introduce 

a gravity effect (due to self loads of the rods) in the axial 

direction. Constant lateral stress (o,) is applied through a 

system of pistons with "Bellofram rolling diaphragms" which 

work with negligible friction under fluid pressure. The 

axial deformation is applied with a jack driven by a 1/6 h.p. 

motor through a speed reduction system (Fig. 7). When an 

axial deformation is applied, the axial and lateral dimen­

sions of the assemblage change. The axial deformation is 

measured by an Ames dial fixed to the jack. The lateral 

deformation is measured with a set of four Ames dials mounted 

on the open face of the collapsible box (Fig, 5). These 

dials and the plan deformation of the geometry of the rods 

are photographed at regular time intervals by a camera 

mounted to look down on the top of the collapsible box (Fig. 

oa). Volume changes are calculated from a mathematical form­

ulation using readings of all the Ames dials. The axial 
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deformation is applied at a constant rate throughout the dur­

ation of the experiment. Axial deformations and axial loads 

are observed manually with the help of an axial Ames dial and 

a Dillon load cell mounted directly onto the face of the jack. 

The experiment is performed at room temperature and humidity. 

Provision was made to moimt seven, instead of four, Ames 

dials to measure lateral deformations of the collapsible box, 

with six instead of three side platens on each side of the 

collapsible box. Provision was also made to work with the 

box under constant volume. Neither of these features was 

used in the experiments; in fact, as will be shown, the con­

stant volume arrangement would cause the box to "lock", pro­

hibiting gross axial deformations by preventing dilatant 

expansion of the assemblage. 

Collapsible box 

The collapsible box (Fig. 3) consists of three aluminum 

5"x4"xl/2" rectangular plates on each side of the box and a 

bottom plate of teflon 16"x8"xl/4" supported by a plate of 

steel 16"x8"xl/16". The steel plate rests on a layer of 

steel ball bearings held separated by an aluminum spacer. 

These, in turn, rest on an adjustable horizontal rest plate 

supported by the main frame. With this arrangement, the 

bottom of the box has three degrees of freedom of motion, 

namely, axial, lateral and vertical, and may be accurately 

levelled. Each side plate of the box is connected to four 
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Figure 3. Collapsible box; (a) plan, (b) cross section 

1. Side plates or platens 

2. Teflon side plates 

3. Swivel joints or ball and socket 

4. Fixed plate 

5. Movable plate connected to load cell 
through ball and socket 

6. Dillon load cell 

7. Pressure unit 

8. Steel rods 

9. Bottom teflon plate 

10. A bottom supporting steel plate 

11. Aluminum spacer 

12. Horizontal rest plate fixed to the 
main frame 

13. Steel shots 

14. Piston rod 

15. Piston 

16. Bellofram 

17. Ball and socket 
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Main Frame 

HZ 
Collapsible 

Box 

Main Frame Main Frame 

16 15 

(b) 

Figure 3. Collapsible box; (a) plan, (b) cross section 



www.manaraa.com

61 

pressure units through ball-and-socket joints at the ends of 

the piston rods to facilitate free rotation of the plate in 

two directions. One end of the box consists of a 5"x4"xl" 

steel plate rigidly connected to the main frame, and the 

other consists of a similar steel plate which is connected to 

the load cell by a ball-and-socket arrangement. 

Lateral stress system 

Constant lateral stress is applied through a system of 

twelve pressure units, four for each plate, on each side of 

the collapsible box (Fig. 4). Each pressure unit consists of 

a pressure cylinder cuid a piston fitted with a "Bellofram 

rolling diaphragm", used because it is capable of : 

1. providing a leak-proof device to convert gas or 

fluid pressure into a linear stroke, 

2. tolerating minor accentricities and cocking of the 

piston rod and cylinder without affecting the 

operation of the unit, 

3. providing a long stroke within a relatively con­

fined area, 

4. responding to small pressure variations because of 

very low friction and hysteresis, and 

5. providing a working pressure area which is constant 

(within 1%) through its entire range. 

All the pressure units on both sides of the collapsible box 

are connected to the same pressure source. For a low lateral 
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Pressure Unit Pressure 

Valve 

Collapsible 

Box 

Pressure Line 

Pressure Valve 

Pressure Regulators 

(High Stage) Pressure Gage 

Bypass valve 

Pressure Regulator 
(Low Stage) 

Bleeding valve 

COg gas Cylinder 

To Air Compressor 

Figure 4. Lateral stress system 
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pressure, up to 115 psi gage or 30 psi lateral pressure on 

the assemblage, compressed air is used; whereas, for higher 

pressures, liquid carbon dioxide (COg) is used. Liquid COg 

is capable of providing a constant pressure of up to 900 psi 

at room temperature. A maximum gage pressure of 200 psi was 

used in the present experimentation, dictated by the capacity 

of Bellofram rolling diaphragms. It has been possible to 

keep the pressure variations to a maximum of +1% by the use 

of precision pressure regulators with operating ranges 

selected for the different lateral pressures used. 

Calibration of Bellofram pressure units 

Pressure units were calibrated in sets of two. Each set 

was subjected to gage pressures from 0 to 280 psi increasing 

at an interval of 20 psi, and from 280 psi to 0 psi decreas­

ing at intervals of 50 or 20 psi. A previously calibrated 

proving ring was used to establish the relation between gage 

pressure and force. The proving ring was calibrated by use 

of a direct load, varying from 0 to 900 lbs — increasing and 

decreasing at equal intervals of 100 lbs, on a calibrated 

platform scale. Calibration of the pressure units was 

repeated five times for each set to obtain average values. 

The lateral stress a 3 and gage pressure was related through 

the relation 

OTs = 0.2552 (gage pressure) + 0.7188 
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Main Frame 

Lateral Deformation 

Modified Ames Dials 

Collapsible 

Box 

Dillon Load Cell 

oo o 

Axial Deformaticm 

Ames Dial 
Dillon Load Cell 

Readout system 

Jack 

Main Frame 

Figure 5. Lateral and axial deformation measurement and the 
axial load measurement system 
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or 

gage pressure = 3.9185 as - 2.817. 

Lateral deformation measurement system 

Lateral deformations are measured at four points — two 

at the ends and two in between along the length of the col­

lapsible box. Ames dials capable of reading to 0.001" with 

a total range of 1" were used to measure separation of points 

on two opposite sides of the collapsible box. The dial stems 

were extended by brass rods of 9" length (Fig. 6b) and 1/8" 

diameter threaded at both ends. Coupling to the box was by 

two steel stops, one fixed to the bottom of the dial and the 

other to the brass rod. The latter stop can be fixed at any 

position of the rod along its length, thus giving a capabil­

ity to measure across the collapsible box with variable ini­

tial width. 

In order to read all four Ames dials simultaneously, 

along with axial deformations and loads, a photographic 

arrangement was made at the top of the collapsible box. The 

arrangement consists of two concentric neon light tubes with 

a 35mm Kodak f2.8/50mm camera at their center. The camera 

is capable of rotation in a vertical plane. The assembly of 

light and the camera (Fig. 6a) is mounted on a horizontal 

leg and can slide to any position along the leg. The hori­

zontal leg can revolve around a column which, in turn, is 

fixed to the main frame. The horizontal leg also can revolve 
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Horizontal Leg 

Concentric Neon Li^t Camera 

Cone of Li^t Column 

Modified Ames dial 

Collapsible 

Box Main Frame 

(a) 

Ames dial 
Brass Attachment Rod 

Movable Steel Rider 
(b) 

Fixed Steel Rider 

Figure 6. The biaxial test apparatus; (a) photographic 
set-up, (b) modified Ames dial 
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in a horizontal plane and can move up and down against the 

column. With this arrangement, the camera can be easily 

focused and the light intensity can be adjusted for good 

photography. Photographs are made at regular time intervals, 

allowing all the Ames dials to be recorded, while the plan 

deformation of the assemblage is photographed, enabling loca­

tion of the plane or zone of failure and its inclination. 

This also facilitates the study of translational and rota­

tional movements of each individual rod, made possible by 

marking lines on the exposed rod ends prior to starting each 

experiment. 

Axial deformation system 

The axial deformation system (Pig. 7) consists of a 

Norton-Duff ten-ton jack driven by an electric motor of 1/6 

h.p. through a complex speed reduction arrangement. Applica­

tion of the axial load is thus strain-controlled. 

The electric motor is fitted with a precision motor 

speed control which is theoretically capable of regulating 

the speed in 100 steps. The speed reduction system consists 

of two Boston reducers, five sprockets of 30, 30, 15, 9 and 

112 teeth, and a worm gear jack. The Boston gears reduce 

the speed by 2,000 times, and the sprockets can further 

effect a reduction of 12 times. Thus, the whole speed reduc^ 

tion system, including the worm gear jack, is capable of pro­

viding an axial deformation range of 0 to 2.5 thousandths of 
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Figure 7. Axial deformation system 
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an inch per minute. An Ames dial is connected to the worm 

shaft of the jack such that it directly measures the axial 

deformations in thousandths of an inch. 

Axial load measurement 

For measurement of axial load, a Dillon load cell (Fig. 

5) with its readout system is used. The load cell is of a 

10,000-lb. capacity and is mounted on the end of the worm 

shaft of the ten-ton jack. The other end of the load cell 

is connected to the collapsible box through a ball and socket 

arrangement. The Dillon readout system is in two stages, 

namely 0 to 5,000 lbs. and 5,000 to 10,000 lbs., which gives 

better precision in reading the axial load. 

Main frame 

The main frame (Fig. 2) was designed as a rigid closed 

box section for an axial load of 15,000 lbs. and a lateral 

load of 5,000 lbs. The maximum deflection in the box section 

was kept equal to one thousandth of an inch under the above 

load system. In practice, the maximum axial load used is 

less than 4,000 lbs., which gives a calculated maximum struc­

tural axial deformation equal to one-quarter of a thousandth 

of an inch, compared to a total axial deformation of 1/2" in 

the assemblage. The box section was rigidly welded to a 

four-legged skeleton supported on rollers, which gives fur­

ther rigidity to the box section. 
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Material Tested 

The granular assemblage is modeled by cylindrical rods 

of different diameters, materials and shapes. Two different 

materials/ namely steel and teflon, were available in geo­

metrical shapes of cylinders and square bars. The following 

five sizes of steel rods of circular cross section were 

e^qperimented with: 

1" diameter cold rolled steel rods 

3/4" diameter cold rolled steel rods 

1/2" diameter cold rolled steel rods 

1/4" diameter steel welding rods 

1/8" diameter steel welding rods 

3/4" diameter teflon rods 

All the sizes, except the l/8"-diameter welding rods, were 

machine cut and lightly polished on a lathe with a fine emeiry 

cloth. The rods then were covered by a thin layer of light 

machine oil to prevent rusting. The lengths of the rods were 

accurately cut so as to give a reasonably smooth surface 

while standing with their axes vertical. The 1/8" steel 

welding rods were saw-cut, so the length could not be con­

trolled as precisely, with the result that a smooth planar 

surface was not attained when they were made to stand with 

their axes vertical in the collapsible box. 
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Sample Preparation 

Before testing, the rods were washed with acetone to 

remove any loose material and lubricant from the surface, and 

were then cleaned with a clean dry cloth. A second acetone 

bath was given to the rods before they were used for experi­

mentation . 

Countless possibilities existed for an initial arrange­

ment of regular and random rod assemblages. To simulate a 

densest packing, a rhombic geometrical array was used in all 

tests, the long axis of the rhombus coinciding with the major 

principal stress direction (ai). Care was taken in arranging 

the rods in a regular geometrical array with its center line 

coincident with the line of application of the load, a string 

line being used for this purpose. In a rhombic array, the 

rods in alternate rows number r and r-1, and it was always 

seen that the first and the last rows of the assemblage had 

the same number (i.e., r) of rods so as to insure a symmetri­

cal assemblage. Before application of axial strain, the 

assemblage was subjected to the required predetermined con­

stant lateral stress (03) and the loaded end platen moved 

axially with the help of the disengaged jack, so that contact 

with the load corresponding to Ci = % was shown by the 

Dillon load readout system. At this point, the axial defor­

mation dial was set to zero. Lines making eui angle of 60° 

with the 03 direction were then drawn with a felt-tipped 

pen through the centers of the exposed rod ends. These lines 
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helped in establishing movements of the rods during deforma­

tion. After the linear grid was marked with black ink, the 

four lateral deformation modified Ames dials were fitted on 

to rest (Fig. 5) on the top of the side platens. The first 

lateral deformation dial was placed on the center line of the 

cylinders in the first row from the load side, and the last 

dial was placed on the center line of the last row; whereas, 

the second and third dials were exactly 5" apart on the edges 

of the central side platens. The camera was adjusted and 

focussed in such a manner that the lateral deformation dials 

could be read comfortably, along with a reasonably sharp 

picture of the deformation pattern. Special care was taken 

in aperture and shutter adjustment for the sake of neat 

photography. 

Testing Technique 

Five values of constant lateral stresses, namely 10, 20, 

30, 40 and 50 psi, were used for the experiments. After all 

preparations are completed and the axial deformation dial is 

set for an initial zero deformation reading, a constant axial 

strain at the nominal rate of 0.001% per second is applied. 

Photographs are taken at the interval of 0.005" of axial 

deformation during the initial stage; then this interval is 

increased to 0.01" and finally to 0.02". Total time for 

which the axial deformation is applied to assemblage, along 

with the total axi#! deformation itself, is noted to find the 
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true axial strain rate. After the assemblage has been sub­

jected to a required axial deformation, the experiment is 

stopped and the film is processed. Processed film is pro­

jected through an enlarger to read the lateral deformation 

dials and observe the movement of individual rod and failure 

planes. Dial readings are converted to volume change by the 

formulations given below (refer to Figs. 8 and 10): 

Effective width of the assemblage 

= distance between the centers of the first 

and last rods in the first row 

= 2(r - l)d sinX 

Effective length of the assemblage 

= distance between the center lines of the 

first and the last rows 

= (n - 1)d sin(90 - A) 

Axial strain (ei) E 
(n - 1) d sin(90 - X) 

Initial volume (vo) = 2(r-1)n-1)d^L sin(90-X)sinX 

Change in volume (dv) = a + b + e -2 (r-1) dE sinX]L 

Volumetric strain (—) 
v o  

1 
2(r-1)(n-1)d^sin(90-X)sinX 2 

-2(r-l)dE sinX] 

Axial stress (ai) G 
2 (r - l)d sinX L 

where X = 30 in the present experimentation 
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A. Reading of first (from load side) lateral 
deformation dial 

B. Reading of second (from load side) lateral 
deformation dial 

C. Reading of third (from load side) lateral 
deformation dial 

D. Reading of fourth (from load side) lateral 
deformation dial 

E. Reading of the axial deformation dial 

a. Distance between first and second dials 

b. Distance between second and third dials 

e. Distance between third and fourth dials 

r. Number of rods in the first cross row (from 
load side) 

d. Diameter of rods 

L. Length of rods 

G. Dillon load cell readout reading 

X. Distribution angle 

Figure 8. Mathematics of collapsible box 
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Reproducibility 

The rate of application of axial strain and axial load 

was reproducible with a high degree of accuracy, and the use 

of a two-stage pressure regular made it possible to attain 

an almost constant lateral pressure. The reproducibility of 

the regular geometrical array with its center line coincident 

with the line of application of load was somewhat less pre­

cise, in spite of the extreme care taken in arranging the 

rods. In addition, there was unavoidable variation in the 

surface finish of the rods. 

Another important factor which may affect reproducibil­

ity is the initial zero setting of the axial deformation dial. 

It was observed that after application of constant stress, 

the axial deformation dial could not be uniquely set for 

load, corresponding to Oi = % on the Dillon load cell 

readout system. For example, after setting the axial dial 

at zero with the readout load corresponding to Oi = if 

the assemblage was subjected to some axial load and left for 

some time, then after bringing the axial load to its origi­

nal value, the axial deformation dial could not come to the 

initial zero setting. This effect was particularly pro­

nounced in smaller diameter rods. Some of the possible rea­

sons, in the case of the smaller diameter assemblage, can 

be: (1) it is extremely difficult, if not impossible, to 

align the center line of the assemblage along the ai-axis; 

and (2) the smaller diameter rods, being relatively more 
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slender than the larger diameter rods, can bend more easily 

along their length, thus rendering the perfect fit of the 

assemblage impossible. 

This could be a reason for a floating (^) with u3 AiiSX 

respect to axial strain, or a shifting — versus £i curve 
V  0  

along the direction of the axial strain on plots. These 

effects were apparent from repeated tests. Flotation of the 

(—) point and the — versus £i curves with different 03 max ^ vo 

lateral stresses can also be due to different initial elas­

tic deformations, since increasing lateral stresses will 

induce greater initial elastic deformations. 
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THEORETICAL INVESTIGATIONS 

General Considerations 

When an assemblage of rods is subjected to a stress 

field, then the forces between the cylinders are at first 

indeterminate because each cylinder is in contact with six 

neighboring cylinders. Any small change in the geometry of 

its boundary, e.g. a change in the shape of the surrounding 

frame which is brought about by moving the load side platen, 

results in a geometrical change of pattern which always 

includes a series of gaps or slack contacts (this follows 

from Osborne Reynolds' theory of dilatancy). A very small 

change of shape in the boundary is sufficient to produce 

this effect; it needs to be only of the same order of magni­

tude as the elastic strain in the cylinders. The gaps are 

definite limits to the lines of action of the forces. Thus, 

creation of two gaps around a cylinder will reduce the 

neighboring contacts from six to four, which will make the 

forces between the cylinders determinate. Since dilatancy 

may be looked upon as a cause of gaps and also of slack con­

tacts (no visible gaps), its intimate connection with the 

pressure distribution is apparent. 

Forces Acting 

Let us consider an assemblage of cylinders having a dis­

tribution angle equal to X (angle for some skew arrangement 

such that X = 30° gives us a hexagonal array and X = 45° 
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(a) 

2d cosX 

( d )  

Figure 9. Regular geometrical arrays; i is the shape factor 
and A is the distribution angle; (a) hexagonal 
array of oval shapes, (b) hexagonal array of circu­
lar shapes, X = 30°, (c) cubic array of circular 
shapes, X = 45°, (d) hexagonal array shown with 
forces 
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gives us a cubic array, shape factor i = 1). When it is 

subjected to a biaxial stress field, a sort of mass trans­

mission of forces takes place in the axial and lateral direc­

tions. If cylinder K (Fig. 10) in an upper layer is 

supported by two cylinders P and L in the lower layer, 

cylinder K tends to push cylinders P and L apart, tend­

ing to break the contact between them. Now consider a X-

array (distribution angle = X) of cylinders in which cylinder 

P is surrounded by six cylinders, L, M, N, 0, J and K (Fig. 

10). This is the geometric arrangement which gives the mini­

mum void ratio when X = 30°. In the axial direction, rods 

J and K are supported by rods O and P, and P and L, 

respectively. Similarly, rod P is axially supported by 

rods N and M. In the lateral direction, rod O is sup­

ported by rods J and N, and rod P by K and M, assum­

ing no contacts between 0 and P, and P and L. This 

gives rise to the mass transmission of forces from cylinder 

to cylinder. If fi is the axial force on one cylinder and 

ft is the lateral force, then 

f 1 = 2d Ui cos (90-X) (1) 

±3 = 2d as cos X (2) 

where d is the diameter of cylinders, cTi and % are axial 

and lateral stresses on a gross area basis, respectively, and 

X is the distribution angle. 
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Figure 10. An assemblage of rods subjected to biaxial 
stresses 

r = Number of rods in first cross row (from 
load cell side) 

n = Number of cross rows of rods in the box 

L = Length of rod 

d = Diameter of rod 

= Axial stress 

Og = Lateral stress 

f, = Force acting on one rod in axial direc­
tion = 2d sinX 

f_ = Force acting on one rod in lateral direc 
tion = 2d Gg cosX 

F = Normal force acting on one rod 

T = Tangential force acting on one rod 

Length of assemblage = (n-l)d cosX 

Width of assemblage = 2(r-l)d sinX 

Original volume = (n - 1)(r - 1)d^L sin2X 
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I*" 2(r-l)d sin X 

c% -»>l3 

(n-l)d cosX 
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Next, consider a cylinder P of the array and resolve 

the axial and lateral forces ^ and ^ to give a normal 

force F acting along the (90 - X)-direction from the 03 r 

axis, and a tangential force T at a right angle to the 

(90 - X)-direction. Then 

F = ̂  cosX + ̂  sinX. 

Substituting the values of f1 and f 3 from Eqs. (1) and 

(2), respectively, then 

F = daicos (90-X) cosX + das cosX sinX 

= d cosX sinX (ai + 03 ) 

= d (ai + 03 ) (3) 

T — sinX — ^ cosX 

= daicos(90-X)sinX - doj cosXcosX 

= daisin^X - dos cos^X 

= d(aisin^X - % cos^X) (4) 

Elastic Deformations 

Now let us consider cylinders P and J of the array 

and rotate the center line JP in a clockwise direction 

through angle X, The pair after rotation, as shown in 

Fig. 11, is being acted on by a normal force F and a 
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F 

T 

(c) 

Figure 11. Elastic deformation; (a) two rods, (b) two rods 
deformed elastically under load F, (c) two rods 
deformed elastically under normal and tangential 
loads together 
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tangential force T at their contact. These contact forces 

give rise to elastic deformations in the normal and tangen­

tial directions at the line (actually area) of contact. The 

normal elastic deformation of the contact surfaces brings the 

centers of cylinders J and P closer to each other by a 

distance known as the distance of relative approach, and is 

here denoted by a. The tangential elastic deformation dis­

places cylinders J and P laterally by a distance 6, 

known as the displacement of distant points with respect to 

uniform displacement of the adhered portion. These normal 

and tangential displacements are taking place along the 

direction making an angle (90-A) with the 03 direction. 

The displacements, when properly resolved in the axial and 

lateral directions, will give elastic axial and lateral 

strains on cylinder P. 

Similarly, the elastic axial and lateral strains of 

cylinder P can be obtained from its contact with cylinder 

K. Considering both pairs of cylinders — P and J, and 

P and K — (Figs. 10 and 12), then 

a = distance of relative approach 

6 = lateral displacement 

angle iac = (90-X) and angle tac = X 

From Fig. 12, it can be seen that irrespective of the magni­

tude of 01 and 03 , the axial con^nents of a from pairs 
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Figure 12. Elastic deformations resolved into axial elastic 
strains (a is the distance of relative approach 
and 6 is the lateral displacement) 
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P and J, and K and P are positive and give axial com­

pressive strains; whereas, lateral components of a from 

both pairs are opposite and cancel each other. Also, the 

axial components of 6 from both pairs are positive and 

give rise to axial compressive strain, whereas their lateral 

components also cancel each other. 

From the above, it is evident that contact elastic 

deformations from an axial compressive stress give only 

axial compressive strain which results in a decrease in vol­

ume of assemblage. Such a volume decrease was measured in 

the initial stages of the experimental ~ versus si curves. 

Let e,_ be the elastic axial compressive strain, 

d cosX amd d sinX are the axial and lateral components, 

respectively, of distance d between the centers of two 

cylinders. Then will be equal to the sum of the axial 

components of a and 6 from both the pairs divided by 

d cosX. 

_ 2(acosX + SsinX) 
le d cosX 

= ^ (a + ôtanX) (5) 

But 

(«v)g = Se + Se 

where (5v)^ is the elastic volume change per unit length 

of the cylinders, and and e, ̂  are the axial, 

intermediate and lateral strains. Since we are dealing with 
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plane strain, the intermediate strain is zero and we have 

already shown that lateral strain is also zero. 

Therefore 

(ôv)^ = = j(a + ôtanX) . (6) 

We may note that is the elastic volume change due to 

two contacts at any cylinder, say P. With two contacts 

broken, each cylinder is touching four neighboring cylinders 

and has four contact points. Hence, the total elastic 

volume change per unit length of cylinders (dv)^ corre­

sponding to one cylinder will be twice (ôv)^; thus 

(dv)^ = 2(Sv)g = j(a + ôtanX) . (7) 

The total number of cylinders in the assemblage is 

(n-1)(r-1), where n is the number of cross rows and r is 

the number of cylinders in the first cross row. Therefore, 

total elastic volume change per unit length of cylinders, 

(dv)g is given by 

(dv)^ = (n-1) (r-1) J (a + StanX) . (8) 

The original length and width of the assemblage (Fig. 10) 

are given by (n-l)d cosX and 2(r-l)d sinX, respectively. 

Therefore, the original volume, per unit length of cylinders, 

of the assemblage, Vo, is given by 

vo = (n-1) (r-l)d^sin2X (9) 
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_ 4 (g + 6tanX) ,,q v  
* ' vo d^sin2X 

(dv) 
where — is the elastic volumetric strain of the assem-

V o  

blage. 

Analytical solutions for 6 and a for cylindrical 

rods, to the best knowledge of the author, are not available. 

As previously shown, 

F = d (01 + 03 ) (3) 

T = d(aisin^X - aacos^X) (4) 

By definition within the elastic region, ̂  varies linearly 

with ei; this also is seen in the experiments. If as is 

kept constant throughout the experiment, 

Gi = El 

CTi = EgCi (11) 

where is a constant and can be called an elasticity 

modulus of the assemblage. 

From the above, it can be seen that for a particular 

diameter d and distribution angle X of the assemblage, 

F = some constsmtx si 

T = «mother constant x ei 

Thus, once a relation is found between a, 6, F and T from 
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the theory of elasticity, one could easily find a relation 

(dv) 
between and axial strain ei. 

V o  

Stress Ratio (^) Formulation 03 

General theory 

With increasing stress ratio, the contact forces F 

and T increase in magnitude, and give rise to high contact 

surface tractions. The area of contact surface being so 

small, the surface traction may exceed the yield point of 

the material and cause cold welding of the contact surfaces. 

The strength of these contact junctions may be different due 

to different surface properties, which results in stronger 

junctions at some points than at others. The tendency for 

slipping to occur through the weakest junctions reorientates 

the assemblage into rigid body groups. Thus, a transforma­

tion from mass transmission of forces, from cylinder to 

cylinder, to transmission of forces from one rigid group to 

another, takes place. The latter takes place through the 

particles (cylinders) on the contacting surfaces of two 

groups. 

For the purpose of theoretical analysis, these groups 

are assumed to be like a rigid wedge, ABC in Fig. 13. Once 

the wedge action develops, the forces acting on wedge ABC 

as a whole will be transmitted to the other wedge PGH through 

particles (cylinders) lying on the contacting surface AB. 

As will be shown in the theoretical analysis [Eg. (16)], at 
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2d rr sin i 

dcfe cotx 

Figure 13. An assemblage of rods shown with possible direc­
tions of shear zone when subjected to biaxial 
stresses 
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2(r-l)q sinX 

2(r-l)M sin X A 

(90-X) 

2(r-l)d cosX 

|2(90-X) 

2(r-l)d cosX 

2(r-l)d sin X 
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a stress ratio (^) of cot^X ( X  is the distribution angle 

of the assemblage), the force from one rigid group is trans­

mitted to the other group along the center line of the con­

tacting cylinders, and no tangential components are brought 

into effect. But, as soon as the stress ratio exceeds 

cot^X, the transmitting forces no longer remain along the 

center line of cylinders, which brings into play the tangen­

tial component at the contact points. Stability then depends 

on limiting equilibrium at two contacting points out of four, 

and sliding takes place at the tvo points of limiting equi­

librium while the other two contacting points just rotate. 

Failure takes place in one layer of particles (cylinders), 

subtending an approximate angle of (90-X) with a 03-direc­

tion, acting as rollers between the two rigid groups. 

Stress ratio at failure 

From Fig. 13, it can be seen that the sides of the 

wedge ABC are given by 

AC = 2(r-l)d sinX 

BC = 2(r-l)d cosX 

AB = 2(r-l)d 

Then 2(r-l)d cosXas and 2(r-l)d sinXoi are the lateral 

and axial forces, respectively, acting on the wedge ABC. If 

R is their resultant force, then from Fig. 15(a) 

R = 2(r-l)d / o^sin^X + o^cos^X (12) 
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2(r-l)d SinX 

2(r-l)d 0-3 cosX 

(a) 

d CT3 cotX S = d /â  siiî X+ 03 cos2 X 

y= (90-X) 

d % cot % 

Figure 15. Forces acting on an array; (a) forces acting on 
moving wedge, (b) hexagonal array before failure 

and at — = cot̂ X 
03 
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and 

tanv = 2(r-l)d sinX Oi 
* 2(r-l)d cosX 03 

— tanX (13) 

where y is the angle that the resultant force R subtends 

with the 03-direction. If we assume the resultant force R 

is being transmitted equally through all the cylinders along 

side AB of the wedge ABC to the wedge FGH (Fig. 13), then S, 

the force transmitted through one cylinder, will be given by 

^ = T(F=iy 

_ 2(r-l)d/ aisin̂ X + ô coŝ X 
2(r-l) 

= d/ cTiSin̂ x + oacoŝ x (14) 

in which S makes an angle y with the 03-direction. 

As G1 increases from its initial value, y increases 

along with it (Eq. 13) and reaches a point when its value 

is given by (90-X). At this point, a 1 is given by 

tany = ̂  tanX = tan(90-X) (15) 

Oi = O3cot̂ X (16) 

At this value of o1, the force S is being transmitted 

along the center line of the contacting cylinders; in other 

words, it is acting normal to the cylinders and no 
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C first cross row 

Moving 
wedge 

one volume unit 

ABC moves as a rigid wedge 

d = Diameter of rods 

r = Number of rods in the first cross row 

X = distribution angle 

 ̂= Cos(90-X) = sinX 

AB = AC/sinX = 2(r-l)d = 2{r-l)d 

BC = AB cosX 2(r-l)d cosX 

Number of rods along AB = ̂   ̂= 2 (r-1) 

Number of volume units taking part in volume 
change along AB = 2 x 2(r-1) 

Figure 16. Mathematics of semirigid wedge 
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tangential force is brought into effect. When y exceeds 

(90-X) or ai exceeds ascot̂ X, then S no longer acts 

along the center line of cylinders, and a tangential force 

component must exist at the point of contact. 

Let us consider an array containing cylinder P on the 

surface of the imminent failure plane (Fig, 14). At a stress 

ratio (~) of cot̂ X, all the forces are being transmitted 

along the center line of cylinders; i.e., S is acting at 

(90-X) to the 03-direction. The forces acting on the cylin­

der P [Fig. 15(a)] 

Along JP = d cotX as (17) 

J 2 2 22 
Along KP = d/ Oisin X + as cos X (14) 

At stress ratio  ̂= cot̂ X, this becomes 
Os 

= d/(a3 cot̂ X) ̂sin̂ X + ô coŝ X 

= d cotX as (18) 

Thus, at a stress ratio of cot̂ X, the forces acting on 

cylinder P along JP and KP direction are equal, so failure 

can take place along any direction KP or JP, depending upon 

unknown conditions at that instant. As soon as the stress 

ratio exceeds cot̂ X, S no longer acts along KP; i.e., 

Y > (90-X), but makes an angle of (y+X-90) [Fig. 17(a)] with 

KP, whereas the other force d cotX as is still acting along 

JP. S can now be resolved into a normal force along the 
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Figure 17b. Limiting equilibrium of contact J 
and M of rod P at failure 
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® sin2X+ o| cos|X 

S COS(y+ X -90) 

s (a) 

d % cot X 

(90-X) (90-X) 

Jf.(dcfe_CQtll_ . 

S siii(y)->-90) f (d % cot» 

S cos(yi-X-90) dc&cotX 



www.manaraa.com

98 

direction of PK and a tangential component at a right angle 

to PK [Fig. 17(a)] 

normal component of S along PK = S cos(y+X-90) (19) 

tangential component of S at right angle to PK 

= S sin(Y+X-90) (20) 

After the stress ratio exceeds cot̂ X, which it does before 

0.1% to 0.2% of the axial strain (experimental observation), 

the force component along PK goes on increasing along with 

the stress ratio, but the force along JP stays constant; 

hence, with an increasing stress ratio, the tangential 

stresses at contact point J' will reach the limiting case 

before those at contact point K'. This induces sliding at 

J' and M' and simple rotation at K' and N'; in other 

words, failure takes place by rotation and sliding of cylin­

der P. 

Let us next examine the limiting equilibrium of cylin­

der P [Fig. 17(b)]. 

The limiting tangential force at contact J' and M' 

= f (d cotX as ) (21) 

where f is the coefficient of sliding friction. The force 

at J' and M' induces a counterclockwise couple, and that 

at K' and N* (Eq. 19) induces a clockwise couple. For 

equilibrium, these couples must balance (motion being very. 
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very slow): 

couple due to limiting forces at J' and M' 

= f (d cotX 03 )d (22) 

couple due to forces at K' and N* 

= S sin(Y+X-90)d (23) 

where d is the diameter of rods. Therefore, for equi­

librium 

f (d cotX 03 )d = S sin (y+X-90) d. 

Substituting for S from Eg. 14, 

f cotX 03 d̂  = d̂ sin{y+X-90) / Oisin̂ X + oscoŝ x 

f cotX = / (~) sin?X + coŝ X sin(Y+X-90) 

or 

Since 

f = / (̂ ) ̂tan^X + 1 cosX (-1) cos(Y+X) 

 ̂" " sinX cos (Y+X) 

tanY = ̂  tanX (15) 

o1tanX 

sinY = (24) 
/ ô tan̂ X + o5 

COSY = 03 (25) 

/ Ojtan̂ X + ô  
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. /(̂ )''tan̂ x + 1 = sinX(sinY sinX - cosy cosX) 
f 

sinX(aitanX sinX - as cosX) 

1 f 
CT3 (oisin̂  X/cosX - as cosX sinX) 

(aisin̂  X - 03 coŝ X sinX) = f 03 cosX 

0isiif X = f 03 cosX + 03 coŝ X sinX 

 ̂= (f + sinX cosX) 
3̂ sin̂  X 

( 2 6 )  

which is the stress ratio at failure. 

Stress ratio in post-failure region 

Next let the cylindrical array of Figure 14 be deformed 

to an extent represented by an angle to [Figs. 18 and 19a] 

so that S makes an angle (Y+̂ +w-90) with the center 

line of the same cylinders after failure. The force 

(d cotX 03) will still be acting along the center lines of 

cylinders J, P and M. We may again resolve the force S 

along and at a right angle to the center line NPK, and con­

sider the equilibrium of cylinder P. Tangential forces at 

J' and M' are still present and give rise to a counter­

clockwise couple. Induced tangential forces at K' and N' 

give rise to another couple which is clockwise and should 
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Figure 18. An array on a shear surface in post failure 
de formations 
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2(r-l)d o^sinX 

2(r-l)d cfecosx 

A \— 

2(r-l)d % COSX 
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Figure 19a. Hexagonal array in post failure deformation 

Figure 19b. Equilibrium of rod P in post failure defor­
mation of the array 
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(y+X + 0) -90)  

S cos(y+X+u)-90) 

S siii(yl-X+tir"90) 

doç, cotX 

\ 

/ 

(90-» 

d cfecotx (a) 

(90-X) 

f(d % cotX) 

S siii( y +  X+(13-90) 

S cos(y+X+ar"90) 

J ^ K 

, dcg cotX / s cos (y- X + u) -90) 

S  sin( y +  A +  (U—90) 

f(d % cot» 

d as cotX 

(b) 
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balance the first couple for equilibrium: 

counterclockwise couple = f(d cotX Og )d (27) 

clockwise couple = S sin(y + X + w - 90)d (28) 

where d is the dialeter of the cylinders. For equilib­

rium 

f d̂ cotX aa = S sin (y + a + oj - 90) d. 

Substituting for S from Eq. 14, 

f d̂ cotA 03 = d̂ /ffisin̂ X + %̂ coŝ A sinCy - (90-X-w)] 

f cotX 03 - /afsirî X 4- a^cQs^X [siny cos(90-X-w) 

- cosy sin(90-X-w)] 

Siny and cosy are given by Eqs. 24 and 25. Substituting, 

f cotX 03 = —OisinX + gs cos X [̂ ^̂ anX cos(90-X-w) 

/ aitan X + % _ 03 sin(90-X-u)) ] 

= cosX[aitanX cos(90-X-w) - as sin(90-X-(D) ] 

f 03 = sinX[ortanX cos(90-X-w) - 03 sin{90-X-a)) ] 

CisinX tanX cos(90-X-w) = 03 [f + sinX sin(90-X-w)] 

sr = COŜ Ô-X-M) + 
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Figure 20. An assemblage showing the number of volume units 
(shown shaded) taking part in volume changes 
along shear plane 
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 ̂ sin(̂ +w) + œt(X+»>) ] (29) 

Thus, the stress ratio should change according to the above 

relation with increasing deformation after initial failure. 

The relation between w and the axial unit strain £i may 

be shown to be 

w = arc tan[g ~ cot2A] ̂  (39a) 

where 

E = (n-l)d El cosX (42) 

Example solutions of Eg. 29 for a hexagonal array of cylin­

ders, i.e., for X = 30°, are given in Table 3. For a maxi­

mum stress ratio, w = 0 and Eg. 29 reduces to Eg. 26. 

Volumetric Strain (—) and 
V o  

Axial Strain (ei) Formulation 

(̂ )-(£i) formulation 
V  0  

Let us assume that the upper wedge ABC [Figs. 21a,b] 

moves as a rigid body, which it actually does not do in that 

the first and second Ames dials do not record the same read­

ings. If E is the axial deformation applied to the assem­

blage and X is the distribution angle, then 

 ̂= sin(90 - X) 

or 
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Table 3. Maximum stress ratios for hexagonal array of 
cylinders (theoretical) 

Coefficient of sliding friction. Maximum stress ratio. 

0.00 3.00 

0.01 3.07 

0.05 3.35 

0.10 3.69 

0.12 3.83 

0.14 3.97 

0.16 4.11 

0.18 4.24 

0.20 4.39 

0.22 4.52 

0.24 4.66 

0.26 4.80 

0.28 4.94 

0.30 5.08 
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Figure 21. Mathematics of the shear zone 
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Again, let us consider an array containing rod P 

[Fig. 22a] surrounded by rods J, K, L, M, N and 0. Before 

failure, a line passing through the centers of rods N, P 

and K is represented by line abg; but, after the failure, 

the same line is shifted to the position ab'g* [Fig. 22b]. 

The angle of shift from its original position is w. During 

the process of shifting, the cylinders N, P and K have 

two components of motion. Such a motion, in the case of 

cylinder K, is represented by components gf and fg' 

[Fig. 22b]. Such a motion has been made possible, for exam­

ple, in the case of cylinder P, sliding on its contacts with 

cylinders J and M, and rotating on its contacts with 

cylinders K and N. This deformation of the array results 

in its increase of volume, because parallelogram abce 

deforms to a larger area ab'c'e [Fig. 22b]. 

Area occupied by 4 sectors included in area abce = 

Area occupied by voids in area abce 

= Area abce - Area of 4 sectors 

Area abce = 2 A ace 

2Lj d̂ sin2X] 

= d̂ sin2X 

2 

ndZ 
4 

d̂ (sin2X - -J) (31) 
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Figure 22a. Hexagonal array in prefailure stage 

Figure 22b. Hexagonal array in post-failure stage 
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Area ab'c'e = 2[̂  d̂ sin{2A + w)] 

= d̂ sin(2X + w) 

TTd̂  Area of 4 sectors included in area ab'c'e = 

Area occupied by voids in area ab'c'e 
2 

= d̂ sin(2A + w) -

= d̂ [sin(2X + w) - J] (32) 

Subtracting Eq. 30 from Eg. 31, 

2 Change in area of voids = d [sin(2X+w) - sin2X] 

From Fig. 16, 

Number of volume changing units = 4(r - 1) 

Total change in area of voids 

= 4(r-l)d̂ [sin(2X+w) - sin2A] 

Total volume change (dv) 

= 4 (r-1) d̂ [sin(2X+to) - sin2X] x length of rod (33) 

From Fig. 10, 

2 Original volume vo  = (n-1)(r-l)d sin2X x 

length of rod (34) 

Dividing Eq. 32 by Eq. 33, 
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dv _ 4[sin(2X+a)) - sin2A] 
 ̂ (n-l)sin2X (35) 

where (n-1) is a function of length of assemblage (depth 

of sample), diameter of cylinders, and distribution angle. 

From Fig. 10, 

Length of assemblage = (n-l)d cosX 

(n - 1) = length of̂ assemblage (3g) 

Substituting (n - 1) in Eq. 34, 

dv 2drsin ( 2X + oi) - sin2X] 
Vo (length of assemblage)sinX 

Denoting length of assemblage by Lo, we get 

dv _ ,2d\Sin(2X+w) - sin2X 
Vo Lo 

.za.siniZA+w; - ans 
= (l7̂  iîïïX (37) 

We can see from Eqs. 34 and 36 that the equation 
V 0  

contains the angle of shift w. So we will proceed now to 

express w in terms of axial deformation E. 

Referring to Figs. 21c,d, from Aagg' 

gg' = 2(2d sin ̂ ) = 4d sin ~ (38) 

From Agg'f, 

gg. = gf sin(2X + w) 

sin(90 -j) 
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Substituting gf from Eq. 30, 

, _ E sin(2X + u) 
gg — 

sin(90 - \)sin(90 - |) 

Substituting gg' from Eg. 38, 

4d sin ̂  2 . w 
cosA cos Y 

w _ E sin(2X + 0)) 

4d sin ~ cos j cosX = E sin(2X + u) 

2d sinw cosX = E sin(2X + w) 

_ sin(2X + 0)) 
sinw cosX  ̂

2d 
E 

sin2X cosw + cos2X sinw 
sinw cosX 

cotw 

2sinX  ̂E cosX ̂ 
1 ,2d cos2X 

slnX -
(39) 

(39a) 

Substituting the value of w from Eg. 39a in Eg. 35 or 
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in Eq. 37, 

= (n-l)sin2X {sin(2X+arctan[g-̂ -cot2xrt - sin2\} 

= À <iî52X + arctanCE slnX ' °ot2X]"h-l} (40) 
dv 
Vo 

or 

dv 
Vo 

LosinX {sin(2X + arctan[g-4̂ -cot2X]"̂ ) - sin2X} (41) 

If El is the axial strain, then it is given by 

£, = E 
length of sample 

Substituting the length of sample = (n-l)d cosX. from Fig. 10, 

E 
(n-l)d cosA 

E = (n-l)d El cosX (42) 

Substituting the value of E from Eg. 42 into Eq. 40, we get 

 ̂in terms of axial strain ei, distribution angle X, and 
Vo 

number of rows of rods in the assemblage n. 

= sin(2X+arctanD(%:2yJL_,_2;̂ cot2X]-l)-l) (43) 
dv _ 4 
Vo 

Effects of multiple failure planes and particle (rod) size 

It has been shown that the coefficient of friction on 

the surfaces of the particles (rods) is not constant, but is 

randomly distributed both in space and, as slipping occurs. 
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in time. Therefore, the resolved total friction will be dif­

ferent on the different possible failure planes, failure 

following a plane with the lowest resolved Zf. As slipping 

occurs on a failure plane, which may be called the active 

shear plane, the coefficient of friction on that plane will 

change; whereas, the coefficient of friction on other possi­

ble shear planes will remain constant due to absence of move­

ment along them. Simultaneously increasing w, the value of 

axial stress ai decreases [Eg. 29 ]. Thus, in the process 

of slipping along the active shear plane, if the resolved 

friction along it active) ô êntarily exceeds some 

other coefficient of friction 2f on another possible fail­

ure plane, then the slip will shift to the plane with the 

lower friction, where the process will repeat. However, a 

reduction of axial stress Oi has already occurred, due to 

slipping on the first plane, and cannot be undone, due to 

increased angle co in Eg. 29; therefore, the test proceeds 

from the lower ai. As the axial strain progresses and 

axial stress 0i reduces considerably, then variation in 

2f(active) will not be sufficient to trigger slipping on 

fresh planes, and slipping will continue on the same plane. 

Hence, with increasing axial strain, the process of shifting 

to new failure planes slows down and ultimately stops. 

Statistically, the resolved summation of friction Zf 

on various possible failure planes tends to be more uniform 

in the case of smaller particles (or smaller diameter rods) 
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than in the case of larger particles, because the smaller 

particles give more contacts per shear plane, giving more 

uniform averages and totals. This amounts to saying that 

the resolved friction Ef on all the possible failure 

planes, in the case of the smaller particles, is nearly the 

same; hence, more shear planes are simultaneously available 

for slip to take place than in the case of larger particles. 

The relationship of dilatancy to the spacing of shear 

planes can also be explained by the principle of least work, 

in the following way. A considerable amount of work is done 

in developing a single shear plane under dilatant conditions, 

but proportionately less overall volumetric deformation is 

required in the smaller diameters for forming new groups or 

for regrouping. At the maximum stress ratio (^)which U3 luQiX 

is fairly const sin t for all the rods, the principle of least 

work should give a smaller number of shear planes with the 

larger diameters ; whereas, with smaller diameters, each 

shear plane involves less work and the same effort may be 

expended with equal facility on a greater number of shear 

planes. 

The above arguments were confirmed by experimental 

observations, from which the following postulates are made : 

1. The rate of change of the number of failure planes 

is inversely proportional to axial strain. This 

implies that the width of the failure zone increases 

sharply at first, and then slows down with 
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increasing axial strain. 

2. For the same strain, the smaller the diameter of 

the rods, the larger is the number of failure 

planes. 

If in the first postulate dL is the change of number 

of failure planes, L is the number of failure plane at 

any instant, dei is the axial strain. Then the first pos­

tulate may be expressed as an equation: 

#r = è  ̂

d̂  
1 

curves and c is a constant. Rearranging and integrating 

where is the slope of the tangent to L versus ei 

Eg. 44, 

c dL = 
El 

cL = &nei + &n k 

= Aneik 

L = i î-neik (45) 

where k is a constant of integration, or 

El = ̂  eCL (46) 

Constants c and k can be found from experimental boundary 

conditions. A verification of the form of Eq. 46 will be 

shown by a linear relationship between L and Inzi. Such a 
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graph is plotted for d=l" cylinders in Fig. 23. From this, 

k may be evaluated as shown in Fig. 24, and Eg. 45 becomes 

L = 2n 417 El (47) 

where si is the unit strain x 10 

To express postulate 2 in a mathematical form, a general 

tabulation of the number of failure planes against axial 

strains was made for all the experiments. On the examina­

tion of this data, the following generalization was made : 

On the average, if one failure plane is taking part in 

L. __L_ 1 
u. 9 ' 0.7 and l"-diameter assemblage, then g-y failure 

planes will take part in 1/2", 1/4" and l/8"-diameter assem­

blage, respectively. Therefore, if L is the number of 

failure planes and d (in inches) is the diameter of the 

particles (rods), the above generalization can be expressed 

as : 

L = (d)"°'33 (48) 

Combining Egs. 47 and 48, we obtain 

L = (49) 
(jj)0.33 

To incorporate the requirement of postulates 1 and 2, 

the final relation for volumetric strain is obtained by mul­

tiplying Eqs. 43 and 49; 
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l7°'̂ °"!33't5ÎSSX cotzxr̂ )-!} 

(50) 

which should hold outside of the region of elastic deforma­

tion. Elastic deformations have been observed to be con­

fined to the initial region of 0-0.2% axial strain. 
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TESTING OF THEORY 

Testing of the Predicted Maximum Stress 

To test Eg. 29, which expresses a relation between 

stress ratio (̂ ) and axial strain (ei), the equation is 

reduced for maximum stress ratio by substituting 03 max 

w = 0. The reduced equation becomes the same as Eq. 26. 

By substituting various values of coefficient of friction 

in Eq. 26, the corresponding predicted maximum stress ratios 

friction in Table 3. 

03'max fovind and tabulated against txie coerrxcienTc or 

The experimental maximum stress ratios (—) are also 
03 

tabulated against corresponding lateral stresses (as) in 

Table 4 for all sizes of rods tested. To examine the effect 

of lateral stress ((J3 ) on the maximum stress ratio, graphs 

of max Ĝrsus lateral stress (03 ) are plotted. A very 

slight and linear trend of increasing (~) with increas­

ing lateral stress (03 ) has been observed. This trend is 

particularly conspicuous in the case of 1"-diameter and 

l/8"-diameter rods; but, in the case of other sizes of rods, 

this trend is very slight (Fig. 25). 

The coefficient of friction was evaluated experimentally 

for the l"-diameter rods, and plotted versus normal load in 

Fig. Id. Data with the 1/8"-diameter rods are less reliable, 

due to the presence of teflon side plates in early tests. 
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Table 4. Maximum stress ratio (experimental) 

Serial Diameter of rods as 
number Material (inch) (psi) 03 'max 

1 Cold rolled 1 10 4.13 
2 steel 20 4.62 
3 30 4.40 
4 40 4.53 
5 50 4.72 
6 3/4 10 4.20 
7 20 4.00 
8 30 4.27 
9 40 4.28 
10 50 4.28 
11 1/2 10 3.60 
12 20 3.90 
13 30 3.93 
14 40 3.95 
15 50 4.00 
16 1/4 10 3.80 
17 20 3.60 
18 30 3.93 
19 . 40 4.08 
20 50 4.00 
21 1/8 10 3.6 
22 20 3.7 
23 30 3.9 
24 40 4.1 
25 50 4.0 
26 Teflon 3/4 10 3.1 
27 20 3.18 
28 30 3.21 
29 40 3.24 
30 50 3.36 
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As can be seen from the experimental coefficient of 

friction graph, the l"-diameter rods have a coefficient of 

friction of 0.2. Table 3 gives a value of 4.4 for the 

theoretical maximum stress ratio (̂ ) corresponding to O3 UlâX 

coefficient of friction 0.2; this value compares well with 

the experimental data in Table 4 for 1"-diameter 03 IilaX 

rods. This agreement is particularly satisfying when it is 

realized that the coefficient of friction changes at almost 

every point on the surface of the same rod. 

Testing of the Predicted Stress Ratio {̂ ) 
in the Post-Failure Region  ̂

To test Eg. 29 in the post-failure region, curves of 

the theoretical stress ratio (̂ ) against axial strain 

(ei) have been drawn for various levels of coefficient of 

friction. For drawing the above curves, the axial strain 

at the maximum stress ratio (̂ )_ was assumed to be 
03 max 

zero, because we are assuming that dilatancy begins after 

the maximum stress ratio is reached. It can be seen from 

Eq. 29 that, for a given distribution factor X and coeffi­

cient of friction f, (̂ ) varies with w, w representing 

the dilatancy of gremular mass [Fig. 22b]. Refer to Fig. 2b, 

The above theoretical curves are superimposed on experi­

mental stress ratio curves in Figs. 27-56. This superimposi­

tion has been done in such a way that the point on the theo­

retical stress ratio (~) curve corresponding to w = 0 or, in 

other words, the point of maximum stress ratio US niaX 
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coincided with the point of maximum stress ratio 03 max 

on the experimental stress ratio {̂ ) versus the axial 

strain (si) curve. The theoretical formulation for the 

stress ratio (~) does not take into account the arrested 

slip, which means that slip is assumed to be taking place 

only on a definite shear plane. The theoretical and ejqjer-

imental stress ratio curves are in good agreement in the 

case of larger diameter rods, i.e., 1" and 3/4". 

From examination of the experimental versus theoreti­

cal curves, failure may be hypothesized to take place in the 

following manners; 

1. Shear slip between the semirigid groups may con­

fine itself to one plane throughout the post-

maximum stress ratio dilation. In this 
% Iiiâ.X 

case, if the coefficient of sliding friction stays 

practically constant on the surfaces of the par­

ticles (rods), which means surfaces are macro-

scopically uniform, the experimental stress ratio 

(~) curve should coincide with one of the theo­

retical stress ratio (̂ ) curves, depending upon 

the particular value of the coefficient of fric­

tion. If the coefficient of friction is changing 

chaotically from point to point on the surfaces of 

particles to such an extent that even a reasonable 

statistically constant value of coefficient of 

friction is unobtainable, then even if the slip is 
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Figure 28, Stress ratio curves 
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Figure 30. Stress ratio curves 
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Figure 31. Stress ratio curves 
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Figure 32. Stress ratio curves 
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Figure 33. Stress ratio curves 
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Figure 34, Stress ratio curves 
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Figure 35. Stress ratio curves 
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Figure 36. Stress ratio curves 
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Figure 48, Stress ratio curves 
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confined to one plane, the stress ratio (~) 

will jump up and down on various theoretical fric­

tion level curves. 

2. Shear slip transfers from plane to plane through= 

out the post-maximum stress ratio dila-O3 max 

tion. That is, slip takes place on one shear 

plane, becomes arrested, and shifts to another, and 

so on. If the coefficient of friction is still 

considered constant, the experimental stress ratio 

curve, instead of following one theoretical f-level 

curve, will stay more or less parallel to the axial 

strain axis. This can be explained by considering 

that, with each shear plane abandonment and forma­

tion of a new plane, the theoretical stress ratio 

curve starts anew, i.e., is shifted to the right 

along the axis of axial strain. Thus, the failure 

point will move parallel to the axial strain eixis 

(Fig. 57b), In the soil mechanics literature, such 

a stage in the stress ratio versus axial strain 

curve is called a residual stage or constant volume 

stage; whereas, in the above statement, the coeffi­

cient of friction stays constant while the volume 

may go on increasing. If the coefficient of fric­

tion does not remain constant, the point P (Fig. 

57b) will not move parallel to the axial strain 

axis, but will shift (up or) down to various f-level 
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curves at each particular axial strain. Moreover, 

the curvature of each theoretical stress ratio 

(~) curve is changing with changing f-levels; this 

fact will also contribute in not letting the point 

P move parallel to the axial strain axis. Thus, 

changing coefficients of friction from point to 

point during sliding will cause the stress curve to 

move at some angle to the axial strain axis. 

3. A third alternative can be a combination of the 

above two shear slip mechanisms. Various combina­

tions, obtained by altering the duration of the 

shear slip on a particular plane and by altering 

placement of the two mechanisms with respect to 

the axial strain axis and also by changing their 

order along the axial strain axis, are shown in 

Fig. 57. 

Testing of the Predicted Volumetric Strain (̂ ) 
V 0 

To test Eg. 50, which expresses the relation between 

volumetric strain (̂ ) and axial strain ei, theoretical 

curves are superimposed on experimental volumetric strain 

(—) versus axial strain ci curves. This superimposition 
Vo 

should be done such that the point of zero volumetric strain 

{—) on the theoretical curve coincides with the point on 

the experimental curve where elastic volumetric strain 

becomes complete. This point is uncertain and, at the 
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present stage of knowledge, it is difficult if not impossible 

to ascertain its coordinates with respect to axial deforma­

tion or axial strain. For the sake of simplicity, it is 

assumed that this point corresponds to the point of minimum 

volumetric strain. The difficulty is all the more problem­

atic when one considers that elastic and dilational deforma­

tions probably overlap. 

Inspite of the simplifying assumptions, it can be seen 

from the superimposed curves that there is fairly good agree­

ment between the theoretical and the experimental data. A 

slight deviation from the theoretical curves has been ob­

served in the intermediate stage of axial strain in that the 

experimental volumetric strain exceeds the theoretical value 

corresponding to a particular axial strain. Deviation from 

the theoretical volumetric strain (~) versus axial strain 
VO 

El curve also becomes significant at very large axial 

strains because of more chaotic and less predictable move­

ments of the particles at larged induced deformations. 
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Figure 89. Single shear plane in the case of l"-diameter rods 
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Figure 90. Multiple shear planes in the case of 1/2"-diameter 
rods 
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CONCLUSIONS 

An assemblage of rods in initial maximum density 

packing and subjected to a biaxial stress field 

with an increasing stress ratio, always fails by 

fracture, i.e., by shear along a definite plane(s) 

This is explained by Reynolds' theory of dilatancy 

After the initial stage of elastic deformations, 

the granular mass (in this case, an assemblage of 

rods) has a tendency to split into semirigid 

groups. Outside of the shear zone of slip, no 

dilation was observed to take place within the 

semirigid groups themselves. At the surface of 

the rigid group, some interchange of particles 

between adjacent units was observed to be taking 

place. 

Failure is facilitated by a layer of individual 

particles acting as rollers between the semirigid 

groups. This is explained by the fact that fail­

ure requires simultaneous rolling at some contacts 

and sliding on the others for each particle in the 

shear zone. 

Dilatant volumetric strain (̂ ) does not depend 
Vo 

on confining stresses, but is a pure geometric 

property of a particulate assemblage; it is a geo­

metrical necessity if a densely packed granular 
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mass is to deform in an external stress or strain 

field. 

5. Volumetric strain (—) depends on the particle 
Vo 

size of the granular mass or, in this case, the 

size of rods; the smaller the particle size, the 

smaller will be the volumetric deformation. 

6. Starting with the maximum density packing, the 

volumetric deformation increases with induced axial 

deformation to a point where a minimum density con­

dition exists in the shear zone. The volumetric 

deformation then levels off and may decrease some­

what, after which it will start increasing again. 

This is explained by geometrical regrouping of the 

granular mass during dilatant deformations. 

7. Volumetric strain also depends on the number of 

shear planes along which slip takes place during 

failure. Slip occurs along a larger number of shear 

planes with smaller sized particles (rods). This is 

explained by the larger number of contacts and the 

statistical averaging of resolved friction along the 

possible shear planes. 

8. Slippage along the shear zone could only be observed 

long after the maximum stress ratio (̂ ^̂ max 

reached. According to Mindlin (1953), at the maximum 

stress ratio (̂ ) elastic movement may be 03 IllâX 

expected to start at the edge of the elastic contact 
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surface and progress inwards with increasing axial 

deformations. With each increasing axial unit 

deformation, a new annulus of movement is created 

along the periphery of the surface of the remaining 

contact area. Thus, additional axial deformation 

is needed between initiation of movement at the 

edge of the surface of contact and the point when 

the movement annulus reaches the center of the con­

tact surface. It is only after the elastic annulus 

has reached the center of the contact surface that 

shear slippage and dilatancy are initiated. 

9. The maximum stress ratio seems to be in-U3 lUoX 

sensitive to confining stress 03 r and depends only 

on the coefficient of sliding friction. This is 

explained by the theory presented, 

10. There is a slight tendency for the maximum stress 

ratio to decrease with decreasing particle size. 

This is not explained by the theory presented. 

11. The stress ratio in the post-maximum stress ratio 

{̂ ) region is found to be dependent on the 03 xnâx 

particle size of the granular mass, in this case 

on the size of rods. This is supported by the 

theo2:y presented. 

12. The stress ratio in the post-maximum stress ratio 

(̂ ) is, to a great extent, controlled by slips U3 nicLX 

on the shear planes. Slip can occur on one plane 
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throughout; it can also occur on one plane and then 

shift from plane to plane for the rest of the axial 

deformation. This may be termed as arrested slips. 

There can be several combinations of the above 

processes of slip. 

The so-called residual stress, or the "constant 

volume" region, of stress-strain curves may relate 

to slips shifting continuously from plane to plane 

rather than a zero volume change condition. A con­

tinuous plateau of the stress-strain curve after 

the maximum stress ratio is reached can 
03 luaX 

also be explained by the process of shifting slip 

from plane to plane without confining itself to any 

plane for any appreciable duration. 
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SUGGESTION FOR FURTHER INVESTIGATIONS 

This research has brought into light quite a few very 

interesting points. Two are : 

1. Failure does not occur only due to sliding, but 

also due to a combination of sliding and rolling. 

2. With decreasing size of the particles, the tend­

ency of the failure slip to shift from plane to 

plane increases ; in other words, more shear planes 

are developed than in the case of larger particles. 

This phenomenon of stopping and shifting slip 

keeps the stress ratio higher than if the slips 

were confined to one plane only. 

To study in more detail and to confirm these aspects, 

it is suggested that experimentation should encompass: 

1. Elliptical and hexagonal shaped rods. 

2. Lateral stress level from 50 to 100 or 150 psi. 

3. Mixture of different shapes. 

4. Square rods arranged to simulate different angles 

of bedding planes. 

5. Application of axial deformation from both sides. 

6. Minimum density packing and other packings between 

minimum and maximiim densities. 

For improvement of the biaxial test apparatus, it is 

suggested that: 

1. All the observations, load and deformation 
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measurement should be taken continuously and 

recorded electrically. 

2. All the sides of the collapsible box should be 

coated with a thin film of frictionless coating. 

3. An additional axial jack should be used to apply 

axial deformation from both the ends. 
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